
Problem Analysis Session

EUC 2024 judges

March 24, 2024

EUC 2024 judges Problem Analysis Session March 24, 2024

Our judges and problemsetters

Federico Glaudo (Chief judge)

Lucian Bicsi

Martin Kacer

Petr Mitrichev

Giovanni Paolini

Anton Trygub

Michael Zündorf

EUC 2024 judges Problem Analysis Session March 24, 2024

Statistics (at freeze)

Total number of submissions: 657
of which accepted: 277 (∼ 42%)

Problems attempted/solved Language statistics

Submissions over time

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Number of submissions: 66
of which accepted: 52 (∼ 79%)

First solved by treenity (University of Cambridge) after 10m

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

The problem

You are given two sets of dishes: appetizers and main dishes.

Each dish has spiciness.

Meal is appetizer + main dish

The charm of a meal is defined as an absolute value of the difference in
these spicinesses.

Goal: Form meals in a way that maximizes minimum charm.

Formal problem

You are given two arrays a1, a2, . . . , an, b1, b2, . . . , bn. Over all permutations
(p1, p2, . . . , pn) of (1, 2, . . . , n), find the maximum possible value of

min(|a1 − bp1 |, |a2 − bp2 |, . . . , |an − bpn |)

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

The problem

You are given two sets of dishes: appetizers and main dishes.

Each dish has spiciness.

Meal is appetizer + main dish

The charm of a meal is defined as an absolute value of the difference in
these spicinesses.

Goal: Form meals in a way that maximizes minimum charm.

Formal problem

You are given two arrays a1, a2, . . . , an, b1, b2, . . . , bn. Over all permutations
(p1, p2, . . . , pn) of (1, 2, . . . , n), find the maximum possible value of

min(|a1 − bp1 |, |a2 − bp2 |, . . . , |an − bpn |)

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

The problem

You are given two sets of dishes: appetizers and main dishes.

Each dish has spiciness.

Meal is appetizer + main dish

The charm of a meal is defined as an absolute value of the difference in
these spicinesses.

Goal: Form meals in a way that maximizes minimum charm.

Formal problem

You are given two arrays a1, a2, . . . , an, b1, b2, . . . , bn. Over all permutations
(p1, p2, . . . , pn) of (1, 2, . . . , n), find the maximum possible value of

min(|a1 − bp1 |, |a2 − bp2 |, . . . , |an − bpn |)

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

The problem

You are given two sets of dishes: appetizers and main dishes.

Each dish has spiciness.

Meal is appetizer + main dish

The charm of a meal is defined as an absolute value of the difference in
these spicinesses.

Goal: Form meals in a way that maximizes minimum charm.

Formal problem

You are given two arrays a1, a2, . . . , an, b1, b2, . . . , bn. Over all permutations
(p1, p2, . . . , pn) of (1, 2, . . . , n), find the maximum possible value of

min(|a1 − bp1 |, |a2 − bp2 |, . . . , |an − bpn |)

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

The problem

You are given two sets of dishes: appetizers and main dishes.

Each dish has spiciness.

Meal is appetizer + main dish

The charm of a meal is defined as an absolute value of the difference in
these spicinesses.

Goal: Form meals in a way that maximizes minimum charm.

Formal problem

You are given two arrays a1, a2, . . . , an, b1, b2, . . . , bn. Over all permutations
(p1, p2, . . . , pn) of (1, 2, . . . , n), find the maximum possible value of

min(|a1 − bp1 |, |a2 − bp2 |, . . . , |an − bpn |)

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

The problem

You are given two sets of dishes: appetizers and main dishes.

Each dish has spiciness.

Meal is appetizer + main dish

The charm of a meal is defined as an absolute value of the difference in
these spicinesses.

Goal: Form meals in a way that maximizes minimum charm.

Formal problem

You are given two arrays a1, a2, . . . , an, b1, b2, . . . , bn. Over all permutations
(p1, p2, . . . , pn) of (1, 2, . . . , n), find the maximum possible value of

min(|a1 − bp1 |, |a2 − bp2 |, . . . , |an − bpn |)

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Lemma (Greedy ordering)

Let c , d be some nondecreasing arrays of length n. If there exists some
permutation σ(1), σ(2), . . . , σ(n), such that ci ≤ dσ(i) for all i , then ci ≤ di
for all i .

Proof.

Consider any 1 ≤ i ≤ n

For any j ≥ i we have dpj ≥ cj ≥ ci

There can be at most i − 1 js with dj < ci =⇒ di ≥ ci

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Lemma (Greedy ordering)

Let c , d be some nondecreasing arrays of length n. If there exists some
permutation σ(1), σ(2), . . . , σ(n), such that ci ≤ dσ(i) for all i , then ci ≤ di
for all i .

Proof.

Consider any 1 ≤ i ≤ n

For any j ≥ i we have dpj ≥ cj ≥ ci

There can be at most i − 1 js with dj < ci =⇒ di ≥ ci

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Lemma (Greedy ordering)

Let c , d be some nondecreasing arrays of length n. If there exists some
permutation σ(1), σ(2), . . . , σ(n), such that ci ≤ dσ(i) for all i , then ci ≤ di
for all i .

Proof.

Consider any 1 ≤ i ≤ n

For any j ≥ i we have dpj ≥ cj ≥ ci

There can be at most i − 1 js with dj < ci =⇒ di ≥ ci

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Lemma (Greedy ordering)

Let c , d be some nondecreasing arrays of length n. If there exists some
permutation σ(1), σ(2), . . . , σ(n), such that ci ≤ dσ(i) for all i , then ci ≤ di
for all i .

Proof.

Consider any 1 ≤ i ≤ n

For any j ≥ i we have dpj ≥ cj ≥ ci

There can be at most i − 1 js with dj < ci =⇒ di ≥ ci

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Assume a1 ≤ a2 ≤ . . . ≤ an, b1 ≤ b2 ≤ . . . ≤ bn.

Consider some optimal pairing, assume we paired ai with bσ(i), and got a
minimum charm of k. Let’s call pairs with ai + k ≤ bσ(i) small, and pairs
with ai ≥ bσ(i) + k large.

Observation 1

For elements of small pairs, we can assume they are paired in a sorted order.
Same for large pairs.

Proof.

For small pairs, we have ai ≤ bpi + k, so we can apply the greedy ordering
lemma.

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Assume a1 ≤ a2 ≤ . . . ≤ an, b1 ≤ b2 ≤ . . . ≤ bn.

Consider some optimal pairing, assume we paired ai with bσ(i), and got a
minimum charm of k . Let’s call pairs with ai + k ≤ bσ(i) small, and pairs
with ai ≥ bσ(i) + k large.

Observation 1

For elements of small pairs, we can assume they are paired in a sorted order.
Same for large pairs.

Proof.

For small pairs, we have ai ≤ bpi + k, so we can apply the greedy ordering
lemma.

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Assume a1 ≤ a2 ≤ . . . ≤ an, b1 ≤ b2 ≤ . . . ≤ bn.

Consider some optimal pairing, assume we paired ai with bσ(i), and got a
minimum charm of k . Let’s call pairs with ai + k ≤ bσ(i) small, and pairs
with ai ≥ bσ(i) + k large.

Observation 1

For elements of small pairs, we can assume they are paired in a sorted order.
Same for large pairs.

Proof.

For small pairs, we have ai ≤ bpi + k, so we can apply the greedy ordering
lemma.

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Assume a1 ≤ a2 ≤ . . . ≤ an, b1 ≤ b2 ≤ . . . ≤ bn.

Consider some optimal pairing, assume we paired ai with bσ(i), and got a
minimum charm of k . Let’s call pairs with ai + k ≤ bσ(i) small, and pairs
with ai ≥ bσ(i) + k large.

Observation 1

For elements of small pairs, we can assume they are paired in a sorted order.
Same for large pairs.

Proof.

For small pairs, we have ai ≤ bpi + k , so we can apply the greedy ordering
lemma.

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Observation 2

Let the number of small pairs be t. Then we can assume that we paired
smallest t ai s with largest t bi s, and largest n − t ai s with smallest n − t bi s,
and we will still have a charm of at least k .

More formally:

For 1 ≤ i ≤ t, pair ai with bi+(n−t);

For t + 1 ≤ i ≤ n, pair the ai with bi−t .

Proof.

Trivial greedy!

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Observation 2

Let the number of small pairs be t. Then we can assume that we paired
smallest t ai s with largest t bi s, and largest n − t ai s with smallest n − t bi s,
and we will still have a charm of at least k .

More formally:

For 1 ≤ i ≤ t, pair ai with bi+(n−t);

For t + 1 ≤ i ≤ n, pair the ai with bi−t .

Proof.

Trivial greedy!

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Observation 2

Let the number of small pairs be t. Then we can assume that we paired
smallest t ai s with largest t bi s, and largest n − t ai s with smallest n − t bi s,
and we will still have a charm of at least k .

More formally:

For 1 ≤ i ≤ t, pair ai with bi+(n−t);

For t + 1 ≤ i ≤ n, pair the ai with bi−t .

Proof.

Trivial greedy!

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Solution

Sort ai s, bi s.

For each t from 0 to n:

Find the minimum charm when the smallest t ai s are paired with
largest t bi s, and the largest n − t ai s with the smallest n − t bi s.

Return the largest of these values

Running time: O(n2).

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Solution

Sort ai s, bi s.

For each t from 0 to n:

Find the minimum charm when the smallest t ai s are paired with
largest t bi s, and the largest n − t ai s with the smallest n − t bi s.

Return the largest of these values

Running time: O(n2).

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Solution

Sort ai s, bi s.

For each t from 0 to n:

Find the minimum charm when the smallest t ai s are paired with
largest t bi s, and the largest n − t ai s with the smallest n − t bi s.

Return the largest of these values

Running time: O(n2).

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Solution

Sort ai s, bi s.

For each t from 0 to n:

Find the minimum charm when the smallest t ai s are paired with
largest t bi s, and the largest n − t ai s with the smallest n − t bi s.

Return the largest of these values

Running time: O(n2).

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Solution

Sort ai s, bi s.

For each t from 0 to n:

Find the minimum charm when the smallest t ai s are paired with
largest t bi s, and the largest n − t ai s with the smallest n − t bi s.

Return the largest of these values

Running time: O(n2).

EUC 2024 judges Problem Analysis Session March 24, 2024

B Charming Meals
authored by: Anton Trygub prepared by: Anton Trygub

Solution

Sort ai s, bi s.

For each t from 0 to n:

Find the minimum charm when the smallest t ai s are paired with
largest t bi s, and the largest n − t ai s with the smallest n − t bi s.

Return the largest of these values

Running time: O(n2).
EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Number of submissions: 114
of which accepted: 52 (∼ 46%)

First solved by Heroes of the C (Universidade do Porto) after 13m

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

The problem

Given n non-overlapping disks on the plane, determine whether you can
change their radii so that tangent disks remain tangent, there is no overlap,
and the sum of all radii strictly decreases.

Solution

If we change the radius of a disk by δ, the radius of any tangent disk
has to change by −δ.

−δ

+δ

−δ

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

The problem

Given n non-overlapping disks on the plane, determine whether you can
change their radii so that tangent disks remain tangent, there is no overlap,
and the sum of all radii strictly decreases.

Solution

If we change the radius of a disk by δ, the radius of any tangent disk
has to change by −δ.

−δ

+δ

−δ

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

In general, if we change the radii by real numbers δ1, . . . , δn, we must
have δi = −δj whenever the i-th and j-th disks are tangent.

This condition is also sufficient, provided that δ1, . . . , δn are small
enough in absolute value (to avoid overlaps and to keep all the radii
positive).

Build the graph that describes the tangency relation between the disks:

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

In general, if we change the radii by real numbers δ1, . . . , δn, we must
have δi = −δj whenever the i-th and j-th disks are tangent.

This condition is also sufficient, provided that δ1, . . . , δn are small
enough in absolute value (to avoid overlaps and to keep all the radii
positive).

Build the graph that describes the tangency relation between the disks:

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

In general, if we change the radii by real numbers δ1, . . . , δn, we must
have δi = −δj whenever the i-th and j-th disks are tangent.

This condition is also sufficient, provided that δ1, . . . , δn are small
enough in absolute value (to avoid overlaps and to keep all the radii
positive).

Build the graph that describes the tangency relation between the disks:

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

If a connected component has an odd cycle, the radii of the disks in
that component cannot be changed.

+δ

−δ
+δ −δ

−δ = +δ = 0

If a connected component has no odd cycles, then it is bipartite, and we
can change radii of white-colored disks by +δ and black-colored by −δ.

+δ

−δ
+δ

−δ

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

If a connected component has an odd cycle, the radii of the disks in
that component cannot be changed.

+δ

−δ
+δ −δ

−δ = +δ = 0

If a connected component has no odd cycles, then it is bipartite, and we
can change radii of white-colored disks by +δ and black-colored by −δ.

+δ

−δ
+δ

−δ

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

If a connected component has an odd cycle, the radii of the disks in
that component cannot be changed.

+δ

−δ

+δ −δ

−δ = +δ = 0

If a connected component has no odd cycles, then it is bipartite, and we
can change radii of white-colored disks by +δ and black-colored by −δ.

+δ

−δ
+δ

−δ

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

If a connected component has an odd cycle, the radii of the disks in
that component cannot be changed.

+δ

−δ
+δ

−δ

−δ = +δ = 0

If a connected component has no odd cycles, then it is bipartite, and we
can change radii of white-colored disks by +δ and black-colored by −δ.

+δ

−δ
+δ

−δ

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

If a connected component has an odd cycle, the radii of the disks in
that component cannot be changed.

+δ

−δ
+δ −δ

−δ = +δ = 0

If a connected component has no odd cycles, then it is bipartite, and we
can change radii of white-colored disks by +δ and black-colored by −δ.

+δ

−δ
+δ

−δ

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

If a connected component has an odd cycle, the radii of the disks in
that component cannot be changed.

+δ

−δ
+δ −δ

−δ = +δ = 0

If a connected component has no odd cycles, then it is bipartite, and we
can change radii of white-colored disks by +δ and black-colored by −δ.

+δ

−δ
+δ

−δ

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

If a connected component has an odd cycle, the radii of the disks in
that component cannot be changed.

+δ

−δ
+δ −δ

−δ = +δ = 0

If a connected component has no odd cycles, then it is bipartite, and we
can change radii of white-colored disks by +δ and black-colored by −δ.

+δ

−δ
+δ

−δ

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

To strictly decrease the sum of the radii, we need a bipartite connected
component with a different number of white and black disks.

+δ

−δ
+δ

−δ

Not good

+δ

−δ
+δ

−δ

+δ

Good

To summarize:

Construct the tangency graph — O(n2) is enough.
Visit each connected component, check if it is bipartite and the
number of white and black disks is different — in O(n).
The answer is YES if and only if at least one component is good.

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

To strictly decrease the sum of the radii, we need a bipartite connected
component with a different number of white and black disks.

+δ

−δ
+δ

−δ

Not good

+δ

−δ
+δ

−δ

+δ

Good

To summarize:

Construct the tangency graph — O(n2) is enough.
Visit each connected component, check if it is bipartite and the
number of white and black disks is different — in O(n).
The answer is YES if and only if at least one component is good.

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

To strictly decrease the sum of the radii, we need a bipartite connected
component with a different number of white and black disks.

+δ

−δ
+δ

−δ

Not good

+δ

−δ
+δ

−δ

+δ

Good

To summarize:

Construct the tangency graph — O(n2) is enough.

Visit each connected component, check if it is bipartite and the
number of white and black disks is different — in O(n).
The answer is YES if and only if at least one component is good.

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

To strictly decrease the sum of the radii, we need a bipartite connected
component with a different number of white and black disks.

+δ

−δ
+δ

−δ

Not good

+δ

−δ
+δ

−δ

+δ

Good

To summarize:

Construct the tangency graph — O(n2) is enough.
Visit each connected component, check if it is bipartite and the
number of white and black disks is different — in O(n).

The answer is YES if and only if at least one component is good.

EUC 2024 judges Problem Analysis Session March 24, 2024

I Disks
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

To strictly decrease the sum of the radii, we need a bipartite connected
component with a different number of white and black disks.

+δ

−δ
+δ

−δ

Not good

+δ

−δ
+δ

−δ

+δ

Good

To summarize:

Construct the tangency graph — O(n2) is enough.
Visit each connected component, check if it is bipartite and the
number of white and black disks is different — in O(n).
The answer is YES if and only if at least one component is good.

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

Number of submissions: 79
of which accepted: 51 (∼ 65%)

First solved by <(OvO)> (Saarland University) after 17m

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all
ants to the same vertex when you can only move ants from vertex u to vertex
v if v does not contain less ants.

First Solution

Since ants can not move to an empty vertex the the region where of
non empty homes always needs to stay connected.

Therefore, only ants at a leaf of the tree (of non empty vertices) can
ever move and they can only move in one direction.

Notice that if the smallest group of ants at a leaf can not move the
solution is impossible (all other leaf groups are larger and can therefore
also never be merged into the parent group of the smallest group)

We can simply simulate this process.

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all
ants to the same vertex when you can only move ants from vertex u to vertex
v if v does not contain less ants.

First Solution

Since ants can not move to an empty vertex the the region where of
non empty homes always needs to stay connected.

Therefore, only ants at a leaf of the tree (of non empty vertices) can
ever move and they can only move in one direction.

Notice that if the smallest group of ants at a leaf can not move the
solution is impossible (all other leaf groups are larger and can therefore
also never be merged into the parent group of the smallest group)

We can simply simulate this process.

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all
ants to the same vertex when you can only move ants from vertex u to vertex
v if v does not contain less ants.

First Solution

Since ants can not move to an empty vertex the the region where of
non empty homes always needs to stay connected.

Therefore, only ants at a leaf of the tree (of non empty vertices) can
ever move and they can only move in one direction.

Notice that if the smallest group of ants at a leaf can not move the
solution is impossible (all other leaf groups are larger and can therefore
also never be merged into the parent group of the smallest group)

We can simply simulate this process.

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all
ants to the same vertex when you can only move ants from vertex u to vertex
v if v does not contain less ants.

First Solution

Since ants can not move to an empty vertex the the region where of
non empty homes always needs to stay connected.

Therefore, only ants at a leaf of the tree (of non empty vertices) can
ever move and they can only move in one direction.

Notice that if the smallest group of ants at a leaf can not move the
solution is impossible (all other leaf groups are larger and can therefore
also never be merged into the parent group of the smallest group)

We can simply simulate this process.

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all
ants to the same vertex when you can only move ants from vertex u to vertex
v if v does not contain less ants.

First Solution

Since ants can not move to an empty vertex the the region where of
non empty homes always needs to stay connected.

Therefore, only ants at a leaf of the tree (of non empty vertices) can
ever move and they can only move in one direction.

Notice that if the smallest group of ants at a leaf can not move the
solution is impossible (all other leaf groups are larger and can therefore
also never be merged into the parent group of the smallest group)

We can simply simulate this process.

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all
ants to the same vertex when you can only move ants from vertex u to vertex
v if v does not contain less ants.

Second Solution

Notice that the centroids of the tree are the only homes where all ants
can gather up.

For a fixed root we can can greedily simulate the process with a DFS for
each centroid.

Solve problem for all subtrees, sort them by ascending size and try to
merge them into the parent.

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all
ants to the same vertex when you can only move ants from vertex u to vertex
v if v does not contain less ants.

Second Solution

Notice that the centroids of the tree are the only homes where all ants
can gather up.

For a fixed root we can can greedily simulate the process with a DFS for
each centroid.

Solve problem for all subtrees, sort them by ascending size and try to
merge them into the parent.

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all
ants to the same vertex when you can only move ants from vertex u to vertex
v if v does not contain less ants.

Second Solution

Notice that the centroids of the tree are the only homes where all ants
can gather up.

For a fixed root we can can greedily simulate the process with a DFS for
each centroid.

Solve problem for all subtrees, sort them by ascending size and try to
merge them into the parent.

EUC 2024 judges Problem Analysis Session March 24, 2024

C Annual Ants Gathering
authored by: Petr Mitrichev prepared by: Michael Zündorf

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all
ants to the same vertex when you can only move ants from vertex u to vertex
v if v does not contain less ants.

Second Solution

Notice that the centroids of the tree are the only homes where all ants
can gather up.

For a fixed root we can can greedily simulate the process with a DFS for
each centroid.

Solve problem for all subtrees, sort them by ascending size and try to
merge them into the parent.

EUC 2024 judges Problem Analysis Session March 24, 2024

F Dating
authored by: Federico Glaudo prepared by: Lucian Bicsi

Number of submissions: 114
of which accepted: 42 (∼ 37%)

First solved by KNU 0 GB RAM (Taras Shevchenko National
University of Kyiv) after 4h 5m

EUC 2024 judges Problem Analysis Session March 24, 2024

F Dating
authored by: Federico Glaudo prepared by: Lucian Bicsi

The problem

Given n sets S1,S2, . . . ,Sn of activities, find a pair (a, b) such that all three
sets Sa \ Sb,Sb \ Sa,Sa ∩ Sb are non-empty.

Solution

A pair (a, b) is good if and only if Sa and Sb are neither disjoint nor one
included in the other.

If there are no such good pairs, then the activities must induce a tree
structure!

Rough idea: try to write a checker by building such a tree, and see
if/when it fails.

EUC 2024 judges Problem Analysis Session March 24, 2024

F Dating
authored by: Federico Glaudo prepared by: Lucian Bicsi

The problem

Given n sets S1,S2, . . . ,Sn of activities, find a pair (a, b) such that all three
sets Sa \ Sb,Sb \ Sa,Sa ∩ Sb are non-empty.

Solution

A pair (a, b) is good if and only if Sa and Sb are neither disjoint nor one
included in the other.

If there are no such good pairs, then the activities must induce a tree
structure!

Rough idea: try to write a checker by building such a tree, and see
if/when it fails.

EUC 2024 judges Problem Analysis Session March 24, 2024

F Dating
authored by: Federico Glaudo prepared by: Lucian Bicsi

The problem

Given n sets S1,S2, . . . ,Sn of activities, find a pair (a, b) such that all three
sets Sa \ Sb,Sb \ Sa,Sa ∩ Sb are non-empty.

Solution

A pair (a, b) is good if and only if Sa and Sb are neither disjoint nor one
included in the other.

If there are no such good pairs, then the activities must induce a tree
structure!

Rough idea: try to write a checker by building such a tree, and see
if/when it fails.

EUC 2024 judges Problem Analysis Session March 24, 2024

F Dating
authored by: Federico Glaudo prepared by: Lucian Bicsi

The problem

Given n sets S1,S2, . . . ,Sn of activities, find a pair (a, b) such that all three
sets Sa \ Sb,Sb \ Sa,Sa ∩ Sb are non-empty.

Solution

A pair (a, b) is good if and only if Sa and Sb are neither disjoint nor one
included in the other.

If there are no such good pairs, then the activities must induce a tree
structure!

Rough idea: try to write a checker by building such a tree, and see
if/when it fails.

EUC 2024 judges Problem Analysis Session March 24, 2024

Top-down approach

Sort the activity sets in decreasing order of lengths

For all activity sets Si in this order, create a parent-child
relationship j = p(i) with the last processed index j that contains
some activity (or −1, if there is no such index)

If j ̸= −1 and Si ̸⊆ Sj , then (i , j) is a good pair
If some activity x ∈ Si is also in some other set Sk where
p(k) = p(i), then (i , k) is a good pair
Otherwise, the activity sets still form a tree, therefore no good
pairs exist (yet)

Complexity is O(k log k) or O(k), where k is the total number of
activities, depending on whether one uses ordered sets or hash
maps.

It is possible to implement this solution in O(k) using just arrays,
but this is not required. Alternative complexities such as O(k

√
k)

should also pass, with careful implementation.

EUC 2024 judges Problem Analysis Session March 24, 2024

Top-down approach

Sort the activity sets in decreasing order of lengths

For all activity sets Si in this order, create a parent-child
relationship j = p(i) with the last processed index j that contains
some activity (or −1, if there is no such index)

If j ̸= −1 and Si ̸⊆ Sj , then (i , j) is a good pair
If some activity x ∈ Si is also in some other set Sk where
p(k) = p(i), then (i , k) is a good pair
Otherwise, the activity sets still form a tree, therefore no good
pairs exist (yet)

Complexity is O(k log k) or O(k), where k is the total number of
activities, depending on whether one uses ordered sets or hash
maps.

It is possible to implement this solution in O(k) using just arrays,
but this is not required. Alternative complexities such as O(k

√
k)

should also pass, with careful implementation.

EUC 2024 judges Problem Analysis Session March 24, 2024

Top-down approach

Sort the activity sets in decreasing order of lengths

For all activity sets Si in this order, create a parent-child
relationship j = p(i) with the last processed index j that contains
some activity (or −1, if there is no such index)

If j ̸= −1 and Si ̸⊆ Sj , then (i , j) is a good pair
If some activity x ∈ Si is also in some other set Sk where
p(k) = p(i), then (i , k) is a good pair
Otherwise, the activity sets still form a tree, therefore no good
pairs exist (yet)

Complexity is O(k log k) or O(k), where k is the total number of
activities, depending on whether one uses ordered sets or hash
maps.

It is possible to implement this solution in O(k) using just arrays,
but this is not required. Alternative complexities such as O(k

√
k)

should also pass, with careful implementation.

EUC 2024 judges Problem Analysis Session March 24, 2024

Top-down approach

Sort the activity sets in decreasing order of lengths

For all activity sets Si in this order, create a parent-child
relationship j = p(i) with the last processed index j that contains
some activity (or −1, if there is no such index)

If j ̸= −1 and Si ̸⊆ Sj , then (i , j) is a good pair

If some activity x ∈ Si is also in some other set Sk where
p(k) = p(i), then (i , k) is a good pair
Otherwise, the activity sets still form a tree, therefore no good
pairs exist (yet)

Complexity is O(k log k) or O(k), where k is the total number of
activities, depending on whether one uses ordered sets or hash
maps.

It is possible to implement this solution in O(k) using just arrays,
but this is not required. Alternative complexities such as O(k

√
k)

should also pass, with careful implementation.

EUC 2024 judges Problem Analysis Session March 24, 2024

Top-down approach

Sort the activity sets in decreasing order of lengths

For all activity sets Si in this order, create a parent-child
relationship j = p(i) with the last processed index j that contains
some activity (or −1, if there is no such index)

If j ̸= −1 and Si ̸⊆ Sj , then (i , j) is a good pair
If some activity x ∈ Si is also in some other set Sk where
p(k) = p(i), then (i , k) is a good pair

Otherwise, the activity sets still form a tree, therefore no good
pairs exist (yet)

Complexity is O(k log k) or O(k), where k is the total number of
activities, depending on whether one uses ordered sets or hash
maps.

It is possible to implement this solution in O(k) using just arrays,
but this is not required. Alternative complexities such as O(k

√
k)

should also pass, with careful implementation.

EUC 2024 judges Problem Analysis Session March 24, 2024

Top-down approach

Sort the activity sets in decreasing order of lengths

For all activity sets Si in this order, create a parent-child
relationship j = p(i) with the last processed index j that contains
some activity (or −1, if there is no such index)

If j ̸= −1 and Si ̸⊆ Sj , then (i , j) is a good pair
If some activity x ∈ Si is also in some other set Sk where
p(k) = p(i), then (i , k) is a good pair
Otherwise, the activity sets still form a tree, therefore no good
pairs exist (yet)

Complexity is O(k log k) or O(k), where k is the total number of
activities, depending on whether one uses ordered sets or hash
maps.

It is possible to implement this solution in O(k) using just arrays,
but this is not required. Alternative complexities such as O(k

√
k)

should also pass, with careful implementation.

EUC 2024 judges Problem Analysis Session March 24, 2024

Top-down approach

Sort the activity sets in decreasing order of lengths

For all activity sets Si in this order, create a parent-child
relationship j = p(i) with the last processed index j that contains
some activity (or −1, if there is no such index)

If j ̸= −1 and Si ̸⊆ Sj , then (i , j) is a good pair
If some activity x ∈ Si is also in some other set Sk where
p(k) = p(i), then (i , k) is a good pair
Otherwise, the activity sets still form a tree, therefore no good
pairs exist (yet)

Complexity is O(k log k) or O(k), where k is the total number of
activities, depending on whether one uses ordered sets or hash
maps.

It is possible to implement this solution in O(k) using just arrays,
but this is not required. Alternative complexities such as O(k

√
k)

should also pass, with careful implementation.

EUC 2024 judges Problem Analysis Session March 24, 2024

Top-down approach

Sort the activity sets in decreasing order of lengths

For all activity sets Si in this order, create a parent-child
relationship j = p(i) with the last processed index j that contains
some activity (or −1, if there is no such index)

If j ̸= −1 and Si ̸⊆ Sj , then (i , j) is a good pair
If some activity x ∈ Si is also in some other set Sk where
p(k) = p(i), then (i , k) is a good pair
Otherwise, the activity sets still form a tree, therefore no good
pairs exist (yet)

Complexity is O(k log k) or O(k), where k is the total number of
activities, depending on whether one uses ordered sets or hash
maps.

It is possible to implement this solution in O(k) using just arrays,
but this is not required. Alternative complexities such as O(k

√
k)

should also pass, with careful implementation.

EUC 2024 judges Problem Analysis Session March 24, 2024

G Scooter
authored by: Giovanni Paolini prepared by: Lucian Bicsi

Number of submissions: 103
of which accepted: 41 (∼ 40%)

First solved by Zagreb 1 (University of Zagreb) after 49m

EUC 2024 judges Problem Analysis Session March 24, 2024

G Scooter
authored by: Giovanni Paolini prepared by: Lucian Bicsi

The problem

Devise an itinerary to drive professors to their corresponding classes, without
reaching the same building twice.

Solution...

Ignore professors that are already in a proper building.

Pick up a professor from some building and drive them to a building
where a corresponding class is held.

How to make sure we don’t visit the same place twice?
How to implement such a strategy with a positive attitude?

Achtung! Don’t rush with the implementation! You might regret it...

EUC 2024 judges Problem Analysis Session March 24, 2024

G Scooter
authored by: Giovanni Paolini prepared by: Lucian Bicsi

The problem

Devise an itinerary to drive professors to their corresponding classes, without
reaching the same building twice.

Solution...

Ignore professors that are already in a proper building.

Pick up a professor from some building and drive them to a building
where a corresponding class is held.

How to make sure we don’t visit the same place twice?
How to implement such a strategy with a positive attitude?

Achtung! Don’t rush with the implementation! You might regret it...

EUC 2024 judges Problem Analysis Session March 24, 2024

G Scooter
authored by: Giovanni Paolini prepared by: Lucian Bicsi

The problem

Devise an itinerary to drive professors to their corresponding classes, without
reaching the same building twice.

Solution...

Ignore professors that are already in a proper building.

Pick up a professor from some building and drive them to a building
where a corresponding class is held.

How to make sure we don’t visit the same place twice?
How to implement such a strategy with a positive attitude?

Achtung! Don’t rush with the implementation! You might regret it...

EUC 2024 judges Problem Analysis Session March 24, 2024

G Scooter
authored by: Giovanni Paolini prepared by: Lucian Bicsi

The problem

Devise an itinerary to drive professors to their corresponding classes, without
reaching the same building twice.

Solution...

Ignore professors that are already in a proper building.

Pick up a professor from some building and drive them to a building
where a corresponding class is held.

How to make sure we don’t visit the same place twice?

How to implement such a strategy with a positive attitude?

Achtung! Don’t rush with the implementation! You might regret it...

EUC 2024 judges Problem Analysis Session March 24, 2024

G Scooter
authored by: Giovanni Paolini prepared by: Lucian Bicsi

The problem

Devise an itinerary to drive professors to their corresponding classes, without
reaching the same building twice.

Solution...

Ignore professors that are already in a proper building.

Pick up a professor from some building and drive them to a building
where a corresponding class is held.

How to make sure we don’t visit the same place twice?
How to implement such a strategy with a positive attitude?

Achtung! Don’t rush with the implementation! You might regret it...

EUC 2024 judges Problem Analysis Session March 24, 2024

G Scooter
authored by: Giovanni Paolini prepared by: Lucian Bicsi

The problem

Devise an itinerary to drive professors to their corresponding classes, without
reaching the same building twice.

Solution...

Ignore professors that are already in a proper building.

Pick up a professor from some building and drive them to a building
where a corresponding class is held.

How to make sure we don’t visit the same place twice?
How to implement such a strategy with a positive attitude?

Achtung! Don’t rush with the implementation! You might regret it...

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!

1. Drive to a building where there’s a professor and no class, and
drop them off at a building where there is a corresponding class.

2. Prioritize the buildings where there are professors to the ones
which don’t have any

3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.
Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!

1. Drive to a building where there’s a professor and no class, and
drop them off at a building where there is a corresponding class.

2. Prioritize the buildings where there are professors to the ones
which don’t have any

3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.
Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!
1. Drive to a building where there’s a professor and no class, and

drop them off at a building where there is a corresponding class.

2. Prioritize the buildings where there are professors to the ones
which don’t have any

3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.
Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!
1. Drive to a building where there’s a professor and no class, and

drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones

which don’t have any

3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.
Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!
1. Drive to a building where there’s a professor and no class, and

drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones

which don’t have any
3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.
Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!
1. Drive to a building where there’s a professor and no class, and

drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones

which don’t have any
3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.
Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!
1. Drive to a building where there’s a professor and no class, and

drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones

which don’t have any
3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.
Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!
1. Drive to a building where there’s a professor and no class, and

drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones

which don’t have any
3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.

Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!
1. Drive to a building where there’s a professor and no class, and

drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones

which don’t have any
3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.
Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

Solution!

Let’s imagine that there are the same number of math professors
as there are math classes (same with computer science).

The problem becomes easier!
1. Drive to a building where there’s a professor and no class, and

drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones

which don’t have any
3. Repeat...

Key condition: There is a building with a professor and no class.

Convert the initial problem to an instance of this simpler variant.

Remove all “excess” professors one by one.
Prioritize removing professors from buildings where classes are held.

Complexity: O(n)

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Number of submissions: 54
of which accepted: 20 (∼ 37%)

First solved by NewJeans (University of Oxford) after 1h 6m

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

The problem

You are given n positive integers x1, x2, . . . , xn.

You want to split them into three groups of sizes na, nb, nc so that:

Let sa, sb, sc be the sums of numbers in these groups. Then
sa, sb, sc are the sides of a triangle with positive area.

Formal problem

Doesn’t get more formal than that.

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

The problem

You are given n positive integers x1, x2, . . . , xn.

You want to split them into three groups of sizes na, nb, nc so that:

Let sa, sb, sc be the sums of numbers in these groups. Then
sa, sb, sc are the sides of a triangle with positive area.

Formal problem

Doesn’t get more formal than that.

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Wlog na ≤ nb ≤ nc , and x1 ≤ x2 ≤ . . . ≤ xn.

Let the sum of all numbers be S . We just need the sum in each group to be
smaller than S

2 .

What are some obvious necessary constraints?

The largest group is not too large: x1 + x2 + . . .+ xnc <
S
2 ;

The largest item is not too large: xn + (x1 + x2 + . . .+ xna−1) <
S
2 .

Is it enough?

Of course, as in all my problems.

But we need construction too...

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Wlog na ≤ nb ≤ nc , and x1 ≤ x2 ≤ . . . ≤ xn.

Let the sum of all numbers be S . We just need the sum in each group to be
smaller than S

2 .

What are some obvious necessary constraints?

The largest group is not too large: x1 + x2 + . . .+ xnc <
S
2 ;

The largest item is not too large: xn + (x1 + x2 + . . .+ xna−1) <
S
2 .

Is it enough?

Of course, as in all my problems.

But we need construction too...

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Wlog na ≤ nb ≤ nc , and x1 ≤ x2 ≤ . . . ≤ xn.

Let the sum of all numbers be S . We just need the sum in each group to be
smaller than S

2 .

What are some obvious necessary constraints?

The largest group is not too large: x1 + x2 + . . .+ xnc <
S
2 ;

The largest item is not too large: xn + (x1 + x2 + . . .+ xna−1) <
S
2 .

Is it enough?

Of course, as in all my problems.

But we need construction too...

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Wlog na ≤ nb ≤ nc , and x1 ≤ x2 ≤ . . . ≤ xn.

Let the sum of all numbers be S . We just need the sum in each group to be
smaller than S

2 .

What are some obvious necessary constraints?

The largest group is not too large: x1 + x2 + . . .+ xnc <
S
2 ;

The largest item is not too large: xn + (x1 + x2 + . . .+ xna−1) <
S
2 .

Is it enough?

Of course, as in all my problems.

But we need construction too...

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Wlog na ≤ nb ≤ nc , and x1 ≤ x2 ≤ . . . ≤ xn.

Let the sum of all numbers be S . We just need the sum in each group to be
smaller than S

2 .

What are some obvious necessary constraints?

The largest group is not too large: x1 + x2 + . . .+ xnc <
S
2 ;

The largest item is not too large: xn + (x1 + x2 + . . .+ xna−1) <
S
2 .

Is it enough?

Of course, as in all my problems.

But we need construction too...

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Wlog na ≤ nb ≤ nc , and x1 ≤ x2 ≤ . . . ≤ xn.

Let the sum of all numbers be S . We just need the sum in each group to be
smaller than S

2 .

What are some obvious necessary constraints?

The largest group is not too large: x1 + x2 + . . .+ xnc <
S
2 ;

The largest item is not too large: xn + (x1 + x2 + . . .+ xna−1) <
S
2 .

Is it enough?

Of course, as in all my problems.

But we need construction too...

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Wlog na ≤ nb ≤ nc , and x1 ≤ x2 ≤ . . . ≤ xn.

Let the sum of all numbers be S . We just need the sum in each group to be
smaller than S

2 .

What are some obvious necessary constraints?

The largest group is not too large: x1 + x2 + . . .+ xnc <
S
2 ;

The largest item is not too large: xn + (x1 + x2 + . . .+ xna−1) <
S
2 .

Is it enough?

Of course, as in all my problems.

But we need construction too...

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Wlog na ≤ nb ≤ nc , and x1 ≤ x2 ≤ . . . ≤ xn.

Let the sum of all numbers be S . We just need the sum in each group to be
smaller than S

2 .

What are some obvious necessary constraints?

The largest group is not too large: x1 + x2 + . . .+ xnc <
S
2 ;

The largest item is not too large: xn + (x1 + x2 + . . .+ xna−1) <
S
2 .

Is it enough?

Of course, as in all my problems.

But we need construction too...

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Let’s put elements into groups from largest to smallest. How to check if we
can put an element into a given group?

Assume we already placed a few largest numbers. Assume current sum in
group g is Sg , the number of empty spots in group g is n′g for g ∈ {a, b, c},
and there are n′a + n′b + n′c = n′ numbers remaining, x1 ≤ x2 ≤ . . . ≤ xn′ .

What are some obvious constraints here?

No group is too large: for any group g we have

Sg + x1 + x2 + . . .+ xn′g <
S

2

The largest item is not too large: there exists a group g with n′g > 0,
such that

Sg + xn′ + (x1 + x2 + . . .+ xn′g−1) <
S

2

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Let’s put elements into groups from largest to smallest. How to check if we
can put an element into a given group?

Assume we already placed a few largest numbers. Assume current sum in
group g is Sg , the number of empty spots in group g is n′g for g ∈ {a, b, c},
and there are n′a + n′b + n′c = n′ numbers remaining, x1 ≤ x2 ≤ . . . ≤ xn′ .

What are some obvious constraints here?

No group is too large: for any group g we have

Sg + x1 + x2 + . . .+ xn′g <
S

2

The largest item is not too large: there exists a group g with n′g > 0,
such that

Sg + xn′ + (x1 + x2 + . . .+ xn′g−1) <
S

2

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Let’s put elements into groups from largest to smallest. How to check if we
can put an element into a given group?

Assume we already placed a few largest numbers. Assume current sum in
group g is Sg , the number of empty spots in group g is n′g for g ∈ {a, b, c},
and there are n′a + n′b + n′c = n′ numbers remaining, x1 ≤ x2 ≤ . . . ≤ xn′ .

What are some obvious constraints here?

No group is too large: for any group g we have

Sg + x1 + x2 + . . .+ xn′g <
S

2

The largest item is not too large: there exists a group g with n′g > 0,
such that

Sg + xn′ + (x1 + x2 + . . .+ xn′g−1) <
S

2

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Let’s put elements into groups from largest to smallest. How to check if we
can put an element into a given group?

Assume we already placed a few largest numbers. Assume current sum in
group g is Sg , the number of empty spots in group g is n′g for g ∈ {a, b, c},
and there are n′a + n′b + n′c = n′ numbers remaining, x1 ≤ x2 ≤ . . . ≤ xn′ .

What are some obvious constraints here?

No group is too large: for any group g we have

Sg + x1 + x2 + . . .+ xn′g <
S

2

The largest item is not too large: there exists a group g with n′g > 0,
such that

Sg + xn′ + (x1 + x2 + . . .+ xn′g−1) <
S

2

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Let’s put elements into groups from largest to smallest. How to check if we
can put an element into a given group?

Assume we already placed a few largest numbers. Assume current sum in
group g is Sg , the number of empty spots in group g is n′g for g ∈ {a, b, c},
and there are n′a + n′b + n′c = n′ numbers remaining, x1 ≤ x2 ≤ . . . ≤ xn′ .

What are some obvious constraints here?

No group is too large: for any group g we have

Sg + x1 + x2 + . . .+ xn′g <
S

2

The largest item is not too large: there exists a group g with n′g > 0,
such that

Sg + xn′ + (x1 + x2 + . . .+ xn′g−1) <
S

2

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.
If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.
If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.
If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.
If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.
If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.
If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.

If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.
If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.
If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

K Make Triangle
authored by: Anton Trygub prepared by: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

Sort all xi s, and calculate prefix sums.

Check if conditions hold, if no return NO.

For each element from largest to smallest:

Try to put it in each group, check if conditions hold.
If no, continue to the next group.

Running time: O(n log n).

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Number of submissions: 44
of which accepted: 10 (∼ 23%)

First solved by ELTE 1 (Eötvös Loránd University) after 1h 37m

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

The problem

You are given a complete undirected graph with n vertices and ≤ ⌊ n
2⌋ edges

colored red or blue. Color all remaining edges red or blue so that there is no
simple monochromatic path with > ⌈ 3n

4 ⌉ edges.

Solution

If no edges are colored, split
vertices into the small part and
the big part.

Max blue path: the size of the
big part.

Max red path: two times the
size of the small part.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

The problem

You are given a complete undirected graph with n vertices and ≤ ⌊ n
2⌋ edges

colored red or blue. Color all remaining edges red or blue so that there is no
simple monochromatic path with > ⌈ 3n

4 ⌉ edges.

Solution

If no edges are colored, split
vertices into the small part and
the big part.

Max blue path: the size of the
big part.

Max red path: two times the
size of the small part.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

The problem

You are given a complete undirected graph with n vertices and ≤ ⌊ n
2⌋ edges

colored red or blue. Color all remaining edges red or blue so that there is no
simple monochromatic path with > ⌈ 3n

4 ⌉ edges.

Solution

If no edges are colored, split
vertices into the small part and
the big part.

Max blue path: the size of the
big part.

Max red path: two times the
size of the small part.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

The problem

You are given a complete undirected graph with n vertices and ≤ ⌊ n
2⌋ edges

colored red or blue. Color all remaining edges red or blue so that there is no
simple monochromatic path with > ⌈ 3n

4 ⌉ edges.

Solution

If no edges are colored, split
vertices into the small part and
the big part.

Max blue path: the size of the
big part.

Max red path: two times the
size of the small part.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Incorrect blue edges are bad:
direct to n − 1.

Incorrect red edges are not so
bad: +1.

Take blue connected
components together into
small/big.

Choose red that is ≤ ⌊ n
4⌋.

Make small part of size ⌊ n
4⌋ or

⌊ n
4⌋ − 1.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Incorrect blue edges are bad:
direct to n − 1.

Incorrect red edges are not so
bad: +1.

Take blue connected
components together into
small/big.

Choose red that is ≤ ⌊ n
4⌋.

Make small part of size ⌊ n
4⌋ or

⌊ n
4⌋ − 1.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Incorrect blue edges are bad:
direct to n − 1.

Incorrect red edges are not so
bad: +1.

Take blue connected
components together into
small/big.

Choose red that is ≤ ⌊ n
4⌋.

Make small part of size ⌊ n
4⌋ or

⌊ n
4⌋ − 1.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Incorrect blue edges are bad:
direct to n − 1.

Incorrect red edges are not so
bad: +1.

Take blue connected
components together into
small/big.

Choose red that is ≤ ⌊ n
4⌋.

Make small part of size ⌊ n
4⌋ or

⌊ n
4⌋ − 1.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Incorrect blue edges are bad:
direct to n − 1.

Incorrect red edges are not so
bad: +1.

Take blue connected
components together into
small/big.

Choose red that is ≤ ⌊ n
4⌋.

Make small part of size ⌊ n
4⌋ or

⌊ n
4⌋ − 1.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Why just n ≤ 24, the solution is O(n2)?

Checker is slow: O(n2 · 2n).

Longest path heuristics are faster, but cannot find the longest paths on
the cases we have here: an unbalanced bipartite graph plus a few edges.

n ≤ 24 allows to skip finding connected components, just try 2n options
for the small part.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Why just n ≤ 24, the solution is O(n2)?

Checker is slow: O(n2 · 2n).

Longest path heuristics are faster, but cannot find the longest paths on
the cases we have here: an unbalanced bipartite graph plus a few edges.

n ≤ 24 allows to skip finding connected components, just try 2n options
for the small part.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Why just n ≤ 24, the solution is O(n2)?

Checker is slow: O(n2 · 2n).

Longest path heuristics are faster, but cannot find the longest paths on
the cases we have here: an unbalanced bipartite graph plus a few edges.

n ≤ 24 allows to skip finding connected components, just try 2n options
for the small part.

EUC 2024 judges Problem Analysis Session March 24, 2024

D Funny or Scary
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Why just n ≤ 24, the solution is O(n2)?

Checker is slow: O(n2 · 2n).

Longest path heuristics are faster, but cannot find the longest paths on
the cases we have here: an unbalanced bipartite graph plus a few edges.

n ≤ 24 allows to skip finding connected components, just try 2n options
for the small part.

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Number of submissions: 39
of which accepted: 9 (∼ 23%)

First solved by Jagiellonian teapots (Jagiellonian University in
Krakow) after 2h 18m

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

The problem

Transform amoeba body from a given initial position to a given final position
by moving pixels one-by-one while keeping the body connected at all times.

Solution

Build two trees, one spanning the initial position, one for the final one

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

Resolve the cases where those two trees overlap

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

The problem

Transform amoeba body from a given initial position to a given final position
by moving pixels one-by-one while keeping the body connected at all times.

Solution

Build two trees, one spanning the initial position, one for the final one

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

Resolve the cases where those two trees overlap

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

The problem

Transform amoeba body from a given initial position to a given final position
by moving pixels one-by-one while keeping the body connected at all times.

Solution

Build two trees, one spanning the initial position, one for the final one

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

Resolve the cases where those two trees overlap

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

The problem

Transform amoeba body from a given initial position to a given final position
by moving pixels one-by-one while keeping the body connected at all times.

Solution

Build two trees, one spanning the initial position, one for the final one

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

Resolve the cases where those two trees overlap

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

The problem

Transform amoeba body from a given initial position to a given final position
by moving pixels one-by-one while keeping the body connected at all times.

Solution

Build two trees, one spanning the initial position, one for the final one

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

Resolve the cases where those two trees overlap

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

The easiest case:

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

The easiest case:

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

The easiest case:

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

The easiest case:

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

The easiest case:

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

The easiest case:

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

The easiest case:

Remove pixels from the first tree, bottom-up from leaves to its root

Add those pixels to the second tree, top-down from the root to leaves

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions are further apart?

Find a path between the two positions

Fill the path first and the proceed to the final position

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions overlap? (for start, in one pixel only)

The shared pixel stays

Other than that, the same procedure is used

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions overlap? (for start, in one pixel only)

The shared pixel stays

Other than that, the same procedure is used

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions overlap? (for start, in one pixel only)

The shared pixel stays

Other than that, the same procedure is used

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

What if the positions overlap? (for start, in one pixel only)

The shared pixel stays

Other than that, the same procedure is used

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

Both trees are rooted in the same pixel

The principle of the algorithm remains the same

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

Both trees are rooted in the same pixel

The principle of the algorithm remains the same

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

Both trees are rooted in the same pixel

The principle of the algorithm remains the same

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

If some pixel is to be removed although it belongs to the final position,
it must be removed anyway, to keep the body connected
(the same pixel will be added back later)

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

If some pixel is to be removed although it belongs to the final position,
it must be removed anyway, to keep the body connected
(the same pixel will be added back later)

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

If some pixel is to be removed although it belongs to the final position,
it must be removed anyway, to keep the body connected
(the same pixel will be added back later)

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

If a pixel should be added, but it is already occupied (not removed yet),
it is skipped and the algorithm continues with the next pixel

The respective pixel is marked to not be removed anymore

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

If a pixel should be added, but it is already occupied (not removed yet),
it is skipped and the algorithm continues with the next pixel

The respective pixel is marked to not be removed anymore

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

If a pixel should be added, but it is already occupied (not removed yet),
it is skipped and the algorithm continues with the next pixel

The respective pixel is marked to not be removed anymore

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

If a pixel should be added, but it is already occupied (not removed yet),
it is skipped and the algorithm continues with the next pixel

The respective pixel is marked to not be removed anymore

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

If a pixel should be added, but it is already occupied (not removed yet),
it is skipped and the algorithm continues with the next pixel

The respective pixel is marked to not be removed anymore

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

The respective pixel is marked to not be removed anymore

When the removal comes to such a pixel, it is skipped

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

The respective pixel is marked to not be removed anymore

When the removal comes to such a pixel, it is skipped

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

Solution

If the positions overlap in more places:

The respective pixel is marked to not be removed anymore

When the removal comes to such a pixel, it is skipped

EUC 2024 judges Problem Analysis Session March 24, 2024

J Amanda the Amoeba
authored by: Lucian Bicsi prepared by: Martin Kacer

The problem

Transform amoeba body from a given initial position to a given final position
by moving pixels one-by-one while keeping the body connected at all times.

Solution Summary

1. Build two trees of the two positions, with a path between their roots
(the path may possibly be empty)

2. Removal order: the initial tree bottom-up, then the path between

3. Adding order: the path between, then the final tree top-down

4. Consecutively remove pixels one-by-one and add them, in the given order

5. If a pixel should be added but it is already part of the body,
it is skipped and must be marked to not be removed later

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Number of submissions: 21
of which accepted: 0 (∼ 0%)

First solved by N/A after N/A

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

The problem

We maintain a set of alive cells on the grid. In one operation, we replace
(a, b) → (a+ 1, b) + (a, b + 1). Initially just (0, 0) is alive. Given a set of n
forbidden cells, can we get to a state where none of them are alive? We are
not allowed to have two copies of the same cell.

Solution

We can allow multiple copies of the same cell temporarily, but not in
final state.

Given a sequence of operations that has multiple copies of the same cell
temporarily, we can reorder to get rid of the multiple copies.

Now the order of operations does not matter!

The operations we need to do are uniquely determined, we just need to
execute them fast.

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

The problem

We maintain a set of alive cells on the grid. In one operation, we replace
(a, b) → (a+ 1, b) + (a, b + 1). Initially just (0, 0) is alive. Given a set of n
forbidden cells, can we get to a state where none of them are alive? We are
not allowed to have two copies of the same cell.

Solution

We can allow multiple copies of the same cell temporarily, but not in
final state.

Given a sequence of operations that has multiple copies of the same cell
temporarily, we can reorder to get rid of the multiple copies.

Now the order of operations does not matter!

The operations we need to do are uniquely determined, we just need to
execute them fast.

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

The problem

We maintain a set of alive cells on the grid. In one operation, we replace
(a, b) → (a+ 1, b) + (a, b + 1). Initially just (0, 0) is alive. Given a set of n
forbidden cells, can we get to a state where none of them are alive? We are
not allowed to have two copies of the same cell.

Solution

We can allow multiple copies of the same cell temporarily, but not in
final state.

Given a sequence of operations that has multiple copies of the same cell
temporarily, we can reorder to get rid of the multiple copies.

Now the order of operations does not matter!

The operations we need to do are uniquely determined, we just need to
execute them fast.

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

The problem

We maintain a set of alive cells on the grid. In one operation, we replace
(a, b) → (a+ 1, b) + (a, b + 1). Initially just (0, 0) is alive. Given a set of n
forbidden cells, can we get to a state where none of them are alive? We are
not allowed to have two copies of the same cell.

Solution

We can allow multiple copies of the same cell temporarily, but not in
final state.

Given a sequence of operations that has multiple copies of the same cell
temporarily, we can reorder to get rid of the multiple copies.

Now the order of operations does not matter!

The operations we need to do are uniquely determined, we just need to
execute them fast.

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

The problem

We maintain a set of alive cells on the grid. In one operation, we replace
(a, b) → (a+ 1, b) + (a, b + 1). Initially just (0, 0) is alive. Given a set of n
forbidden cells, can we get to a state where none of them are alive? We are
not allowed to have two copies of the same cell.

Solution

We can allow multiple copies of the same cell temporarily, but not in
final state.

Given a sequence of operations that has multiple copies of the same cell
temporarily, we can reorder to get rid of the multiple copies.

Now the order of operations does not matter!

The operations we need to do are uniquely determined, we just need to
execute them fast.

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Go by diagonals a+ b = z .
da+b,a — the number of
occurrences of (a, b).

In the first sample:

d0 = (1)

d1 = (1, 1)

d2 = (1, 2, 1)

d3 = (0, 2, 2, 0)

d4 = (0, 1, 2, 1, 0)

d5 = (0, 0, 1, 1, 0, 0)

d6 = (0, 0, 0, 0, 0, 0, 0)

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Go by diagonals a+ b = z .
da+b,a — the number of
occurrences of (a, b).

In the first sample:

d0 = (1)

d1 = (1, 1)

d2 = (1, 2, 1)

d3 = (0, 2, 2, 0)

d4 = (0, 1, 2, 1, 0)

d5 = (0, 0, 1, 1, 0, 0)

d6 = (0, 0, 0, 0, 0, 0, 0)

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Go by diagonals a+ b = z .
da+b,a — the number of
occurrences of (a, b).

In the first sample:

d0 = (1)

d1 = (1, 1)

d2 = (1, 2, 1)

d3 = (0, 2, 2, 0)

d4 = (0, 1, 2, 1, 0)

d5 = (0, 0, 1, 1, 0, 0)

d6 = (0, 0, 0, 0, 0, 0, 0)

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Go by diagonals a+ b = z .
da+b,a — the number of
occurrences of (a, b).

In the first sample:

d0 = (1)

d1 = (1, 1)

d2 = (1, 2, 1)

d3 = (0, 2, 2, 0)

d4 = (0, 1, 2, 1, 0)

d5 = (0, 0, 1, 1, 0, 0)

d6 = (0, 0, 0, 0, 0, 0, 0)

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Go by diagonals a+ b = z .
da+b,a — the number of
occurrences of (a, b).

In the first sample:

d0 = (1)

d1 = (1, 1)

d2 = (1, 2, 1)

d3 = (0, 2, 2, 0)

d4 = (0, 1, 2, 1, 0)

d5 = (0, 0, 1, 1, 0, 0)

d6 = (0, 0, 0, 0, 0, 0, 0)

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Go by diagonals a+ b = z .
da+b,a — the number of
occurrences of (a, b).

In the first sample:

d0 = (1)

d1 = (1, 1)

d2 = (1, 2, 1)

d3 = (0, 2, 2, 0)

d4 = (0, 1, 2, 1, 0)

d5 = (0, 0, 1, 1, 0, 0)

d6 = (0, 0, 0, 0, 0, 0, 0)

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Go by diagonals a+ b = z .
da+b,a — the number of
occurrences of (a, b).

In the first sample:

d0 = (1)

d1 = (1, 1)

d2 = (1, 2, 1)

d3 = (0, 2, 2, 0)

d4 = (0, 1, 2, 1, 0)

d5 = (0, 0, 1, 1, 0, 0)

d6 = (0, 0, 0, 0, 0, 0, 0)

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

Go by diagonals a+ b = z .
da+b,a — the number of
occurrences of (a, b).

In the first sample:

d0 = (1)

d1 = (1, 1)

d2 = (1, 2, 1)

d3 = (0, 2, 2, 0)

d4 = (0, 1, 2, 1, 0)

d5 = (0, 0, 1, 1, 0, 0)

d6 = (0, 0, 0, 0, 0, 0, 0)

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

If we get a 3, one of the adjacent numbers is a 2, and we never
terminate: 3, 2 → 2, 3 →

If we only have 0, 1, 2, and there are no forbidden cells, we will
eventually terminate, for example:
1, 2, 2, 2, 1 → 1, 2, 2, 1 → 1, 2, 1 → 1, 1 →.

We have only O(n) steps because without forbidden cells the number of
2s decreases, so this solution is O(n2).

To make it O(n), we can notice that we always have either
(0, 0, . . . , 0, 1, 2, 2, . . . , 2, 1, 0, 0, . . . , 0) or (0, 0, . . . , 0, 2, 2, 0, 0, . . . , 0).

So we just need to maintain two integers and one boolean per diagonal.

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

If we get a 3, one of the adjacent numbers is a 2, and we never
terminate: 3, 2 → 2, 3 →

If we only have 0, 1, 2, and there are no forbidden cells, we will
eventually terminate, for example:
1, 2, 2, 2, 1 → 1, 2, 2, 1 → 1, 2, 1 → 1, 1 →.

We have only O(n) steps because without forbidden cells the number of
2s decreases, so this solution is O(n2).

To make it O(n), we can notice that we always have either
(0, 0, . . . , 0, 1, 2, 2, . . . , 2, 1, 0, 0, . . . , 0) or (0, 0, . . . , 0, 2, 2, 0, 0, . . . , 0).

So we just need to maintain two integers and one boolean per diagonal.

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

If we get a 3, one of the adjacent numbers is a 2, and we never
terminate: 3, 2 → 2, 3 →

If we only have 0, 1, 2, and there are no forbidden cells, we will
eventually terminate, for example:
1, 2, 2, 2, 1 → 1, 2, 2, 1 → 1, 2, 1 → 1, 1 →.

We have only O(n) steps because without forbidden cells the number of
2s decreases, so this solution is O(n2).

To make it O(n), we can notice that we always have either
(0, 0, . . . , 0, 1, 2, 2, . . . , 2, 1, 0, 0, . . . , 0) or (0, 0, . . . , 0, 2, 2, 0, 0, . . . , 0).

So we just need to maintain two integers and one boolean per diagonal.

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

If we get a 3, one of the adjacent numbers is a 2, and we never
terminate: 3, 2 → 2, 3 →

If we only have 0, 1, 2, and there are no forbidden cells, we will
eventually terminate, for example:
1, 2, 2, 2, 1 → 1, 2, 2, 1 → 1, 2, 1 → 1, 1 →.

We have only O(n) steps because without forbidden cells the number of
2s decreases, so this solution is O(n2).

To make it O(n), we can notice that we always have either
(0, 0, . . . , 0, 1, 2, 2, . . . , 2, 1, 0, 0, . . . , 0) or (0, 0, . . . , 0, 2, 2, 0, 0, . . . , 0).

So we just need to maintain two integers and one boolean per diagonal.

EUC 2024 judges Problem Analysis Session March 24, 2024

H Division Avoidance
authored by: Petr Mitrichev prepared by: Petr Mitrichev

Solution

If we get a 3, one of the adjacent numbers is a 2, and we never
terminate: 3, 2 → 2, 3 →

If we only have 0, 1, 2, and there are no forbidden cells, we will
eventually terminate, for example:
1, 2, 2, 2, 1 → 1, 2, 2, 1 → 1, 2, 1 → 1, 1 →.

We have only O(n) steps because without forbidden cells the number of
2s decreases, so this solution is O(n2).

To make it O(n), we can notice that we always have either
(0, 0, . . . , 0, 1, 2, 2, . . . , 2, 1, 0, 0, . . . , 0) or (0, 0, . . . , 0, 2, 2, 0, 0, . . . , 0).

So we just need to maintain two integers and one boolean per diagonal.

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Number of submissions: 15
of which accepted: 0 (∼ 0%)

First solved by N/A after N/A

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

The problem

You are facing n enemies with h1, . . . , hn health. You have k skill points each
can be used to to either increase your damage per hit or your hits per second
by one. How should you distribute the skill points to minimize the time
needed to kill all enemies.

Formal problem

Given WLOG h1 ≥ h2 ≥ · · · ≥ hn.

Let H = h1 + · · ·+ hn.

Let f (x) =
∑n

i=1

⌈
hi
x

⌉
.

Let g(x) = f (x)
k−x .

Find the minimum of g(x) in [0, k].

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

The problem

You are facing n enemies with h1, . . . , hn health. You have k skill points each
can be used to to either increase your damage per hit or your hits per second
by one. How should you distribute the skill points to minimize the time
needed to kill all enemies.

Formal problem

Given WLOG h1 ≥ h2 ≥ · · · ≥ hn.

Let H = h1 + · · ·+ hn.

Let f (x) =
∑n

i=1

⌈
hi
x

⌉
.

Let g(x) = f (x)
k−x .

Find the minimum of g(x) in [0, k].

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 1: the “most interesting” values of x?

Look at g ′(x) = H
x(k−x) .

Notice that g(x) ≥ g ′(x).

The minimum of g ′(x) is k
2 .

We expect the minimum of g to be close to k
2 as well.

True if there were no good testcases. . .

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 1: the “most interesting” values of x?

Look at g ′(x) = H
x(k−x) .

Notice that g(x) ≥ g ′(x).

The minimum of g ′(x) is k
2 .

We expect the minimum of g to be close to k
2 as well.

True if there were no good testcases. . .

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 1: the “most interesting” values of x?

Look at g ′(x) = H
x(k−x) .

Notice that g(x) ≥ g ′(x).

The minimum of g ′(x) is k
2 .

We expect the minimum of g to be close to k
2 as well.

True if there were no good testcases. . .

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 1: the “most interesting” values of x?

Look at g ′(x) = H
x(k−x) .

Notice that g(x) ≥ g ′(x).

The minimum of g ′(x) is k
2 .

We expect the minimum of g to be close to k
2 as well.

True if there were no good testcases. . .

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 1: the “most interesting” values of x?

Look at g ′(x) = H
x(k−x) .

Notice that g(x) ≥ g ′(x).

The minimum of g ′(x) is k
2 .

We expect the minimum of g to be close to k
2 as well.

True if there were no good testcases. . .

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 2: Speeding up the computation of g

Iterate from i = 1 to n until i < hi
x · log(n).

Let qx be the first value of i where the inequality fails.

For qx ≤ i ≤ n the quantity ⌈ hi
x ⌉ takes at most

hqx
x different values.

Then
∑n

i=qx+1⌈
hi
x ⌉, can be computed in O

(
hqx+1

x log n
)
= O(qx)

with binary search.

Obviously,
∑qx−1

i=1 ⌈ hi
x ⌉ can also be calculated in O(qx).

We can compute g(x) in O(qx).

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 2: Speeding up the computation of g

Iterate from i = 1 to n until i < hi
x · log(n).

Let qx be the first value of i where the inequality fails.

For qx ≤ i ≤ n the quantity ⌈ hi
x ⌉ takes at most

hqx
x different values.

Then
∑n

i=qx+1⌈
hi
x ⌉, can be computed in O

(
hqx+1

x log n
)
= O(qx)

with binary search.

Obviously,
∑qx−1

i=1 ⌈ hi
x ⌉ can also be calculated in O(qx).

We can compute g(x) in O(qx).

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 2: Speeding up the computation of g

Iterate from i = 1 to n until i < hi
x · log(n).

Let qx be the first value of i where the inequality fails.

For qx ≤ i ≤ n the quantity ⌈ hi
x ⌉ takes at most

hqx
x different values.

Then
∑n

i=qx+1⌈
hi
x ⌉, can be computed in O

(
hqx+1

x log n
)
= O(qx)

with binary search.

Obviously,
∑qx−1

i=1 ⌈ hi
x ⌉ can also be calculated in O(qx).

We can compute g(x) in O(qx).

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 2: Speeding up the computation of g

Iterate from i = 1 to n until i < hi
x · log(n).

Let qx be the first value of i where the inequality fails.

For qx ≤ i ≤ n the quantity ⌈ hi
x ⌉ takes at most

hqx
x different values.

Then
∑n

i=qx+1⌈
hi
x ⌉, can be computed in O

(
hqx+1

x log n
)
= O(qx)

with binary search.

Obviously,
∑qx−1

i=1 ⌈ hi
x ⌉ can also be calculated in O(qx).

We can compute g(x) in O(qx).

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 2: Speeding up the computation of g

Iterate from i = 1 to n until i < hi
x · log(n).

Let qx be the first value of i where the inequality fails.

For qx ≤ i ≤ n the quantity ⌈ hi
x ⌉ takes at most

hqx
x different values.

Then
∑n

i=qx+1⌈
hi
x ⌉, can be computed in O

(
hqx+1

x log n
)
= O(qx)

with binary search.

Obviously,
∑qx−1

i=1 ⌈ hi
x ⌉ can also be calculated in O(qx).

We can compute g(x) in O(qx).

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Observation 2: Speeding up the computation of g

Iterate from i = 1 to n until i < hi
x · log(n).

Let qx be the first value of i where the inequality fails.

For qx ≤ i ≤ n the quantity ⌈ hi
x ⌉ takes at most

hqx
x different values.

Then
∑n

i=qx+1⌈
hi
x ⌉, can be computed in O

(
hqx+1

x log n
)
= O(qx)

with binary search.

Obviously,
∑qx−1

i=1 ⌈ hi
x ⌉ can also be calculated in O(qx).

We can compute g(x) in O(qx).

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Solution

Maintain the running minimum m of g(x).

Iterate over k
2 ± 0, k2 − 1, k2 + 1,. . .

For each x , if g ′(x) ≥ m skip.

Compute g(x) in O(qx) and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough?
Unexpectedly yes!

This algorithm has the remarkable running time O
(
k
√
n log(n)

)
.

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Solution

Maintain the running minimum m of g(x).

Iterate over k
2 ± 0, k2 − 1, k2 + 1,. . .

For each x , if g ′(x) ≥ m skip.

Compute g(x) in O(qx) and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough?
Unexpectedly yes!

This algorithm has the remarkable running time O
(
k
√
n log(n)

)
.

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Solution

Maintain the running minimum m of g(x).

Iterate over k
2 ± 0, k2 − 1, k2 + 1,. . .

For each x , if g ′(x) ≥ m skip.

Compute g(x) in O(qx) and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough?
Unexpectedly yes!

This algorithm has the remarkable running time O
(
k
√
n log(n)

)
.

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Solution

Maintain the running minimum m of g(x).

Iterate over k
2 ± 0, k2 − 1, k2 + 1,. . .

For each x , if g ′(x) ≥ m skip.

Compute g(x) in O(qx) and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough?
Unexpectedly yes!

This algorithm has the remarkable running time O
(
k
√
n log(n)

)
.

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Solution

Maintain the running minimum m of g(x).

Iterate over k
2 ± 0, k2 − 1, k2 + 1,. . .

For each x , if g ′(x) ≥ m skip.

Compute g(x) in O(qx) and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough?

Unexpectedly yes!

This algorithm has the remarkable running time O
(
k
√
n log(n)

)
.

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Solution

Maintain the running minimum m of g(x).

Iterate over k
2 ± 0, k2 − 1, k2 + 1,. . .

For each x , if g ′(x) ≥ m skip.

Compute g(x) in O(qx) and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough?
Unexpectedly yes!

This algorithm has the remarkable running time O
(
k
√
n log(n)

)
.

EUC 2024 judges Problem Analysis Session March 24, 2024

E Damage per Second
authored by: Michael Zündorf, Federico Glaudo prepared by: Michael Zündorf

Solution

Maintain the running minimum m of g(x).

Iterate over k
2 ± 0, k2 − 1, k2 + 1,. . .

For each x , if g ′(x) ≥ m skip.

Compute g(x) in O(qx) and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough?
Unexpectedly yes!

This algorithm has the remarkable running time O
(
k
√
n log(n)

)
.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Number of submissions: 8
of which accepted: 0 (∼ 0%)

First solved by N/A after N/A

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

The problem

Plant as many trees as possible in an n × n lawn. Trees should be located at
integer coordinates, and disks of radius r centered at these locations should
not overlap.

An optimal configuration for n = 9, r = 1.1

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

Optimal configurations for small r can be constructed explicitly:

r ∈
(
0, 1

2

]
r ∈

(
1
2
,
√

2
2

]
r ∈

(√
2

2
, 1

]

In general, there is a finite number of intervals (p, q] such that the valid
configurations are the same for all radii r ∈ (p, q].

This makes it possible to pre-compute all optimal configurations offline
(not necessary, but useful).

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

Optimal configurations for small r can be constructed explicitly:

r ∈
(
0, 1

2

]
r ∈

(
1
2
,
√

2
2

]
r ∈

(√
2

2
, 1

]
In general, there is a finite number of intervals (p, q] such that the valid
configurations are the same for all radii r ∈ (p, q].

This makes it possible to pre-compute all optimal configurations offline
(not necessary, but useful).

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

Optimal configurations for small r can be constructed explicitly:

r ∈
(
0, 1

2

]
r ∈

(
1
2
,
√

2
2

]
r ∈

(√
2

2
, 1

]
In general, there is a finite number of intervals (p, q] such that the valid
configurations are the same for all radii r ∈ (p, q].

This makes it possible to pre-compute all optimal configurations offline
(not necessary, but useful).

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

Let δ = ⌈r⌉. All trees need to be planted at least δ away from the
boundary of the lawn, so their coordinates must satisfy δ ≤ x , y ≤ n− δ.

For integers 0 ≤ aδ, . . . , an−δ ≤ n − δ, denote by f (aδ, . . . , an−δ) any
optimal configuration where we can only plant trees at locations (x , y)
satisfying x ≤ ay .

Our task is to compute f (n − δ, . . . , n − δ).

We compute f recursively and store results of all recursive calls
(memoization).

If a1, . . . , an−1 < δ, then f (a1, . . . , an−1) = ∅, because any tree would
be too close to the left boundary.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

Let δ = ⌈r⌉. All trees need to be planted at least δ away from the
boundary of the lawn, so their coordinates must satisfy δ ≤ x , y ≤ n− δ.

For integers 0 ≤ aδ, . . . , an−δ ≤ n − δ, denote by f (aδ, . . . , an−δ) any
optimal configuration where we can only plant trees at locations (x , y)
satisfying x ≤ ay .

Our task is to compute f (n − δ, . . . , n − δ).

We compute f recursively and store results of all recursive calls
(memoization).

If a1, . . . , an−1 < δ, then f (a1, . . . , an−1) = ∅, because any tree would
be too close to the left boundary.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

Let δ = ⌈r⌉. All trees need to be planted at least δ away from the
boundary of the lawn, so their coordinates must satisfy δ ≤ x , y ≤ n− δ.

For integers 0 ≤ aδ, . . . , an−δ ≤ n − δ, denote by f (aδ, . . . , an−δ) any
optimal configuration where we can only plant trees at locations (x , y)
satisfying x ≤ ay .

Our task is to compute f (n − δ, . . . , n − δ).

We compute f recursively and store results of all recursive calls
(memoization).

If a1, . . . , an−1 < δ, then f (a1, . . . , an−1) = ∅, because any tree would
be too close to the left boundary.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

Let δ = ⌈r⌉. All trees need to be planted at least δ away from the
boundary of the lawn, so their coordinates must satisfy δ ≤ x , y ≤ n− δ.

For integers 0 ≤ aδ, . . . , an−δ ≤ n − δ, denote by f (aδ, . . . , an−δ) any
optimal configuration where we can only plant trees at locations (x , y)
satisfying x ≤ ay .

Our task is to compute f (n − δ, . . . , n − δ).

We compute f recursively and store results of all recursive calls
(memoization).

If a1, . . . , an−1 < δ, then f (a1, . . . , an−1) = ∅, because any tree would
be too close to the left boundary.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

Let δ = ⌈r⌉. All trees need to be planted at least δ away from the
boundary of the lawn, so their coordinates must satisfy δ ≤ x , y ≤ n− δ.

For integers 0 ≤ aδ, . . . , an−δ ≤ n − δ, denote by f (aδ, . . . , an−δ) any
optimal configuration where we can only plant trees at locations (x , y)
satisfying x ≤ ay .

Our task is to compute f (n − δ, . . . , n − δ).

We compute f recursively and store results of all recursive calls
(memoization).

If a1, . . . , an−1 < δ, then f (a1, . . . , an−1) = ∅, because any tree would
be too close to the left boundary.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

To compute f (a1, . . . , an−1) in general, let x̄ = max{a1, . . . , an−1}, and
let ȳ be such that aȳ = x̄ . This is a rightmost location where we can
plant a tree.

If we do not plant a tree at (x̄ , ȳ), an optimal configuration is given by
f (a′δ, . . . , a

′
n−δ), where a′y = ay if y ̸= ȳ and a′ȳ = aȳ − 1.

If we plant a tree at (x̄ , ȳ), an optimal configuration is given by
f (a′δ, . . . , a

′
n−δ) ∪ {(x̄ , ȳ)}, where a′y is the largest integer ≤ ay such

that locations (a′y , y) and (x̄ , ȳ) are at distance ≥ 2r .

Let f (a1, . . . , an−1) be the best of the two configurations found above.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

To compute f (a1, . . . , an−1) in general, let x̄ = max{a1, . . . , an−1}, and
let ȳ be such that aȳ = x̄ . This is a rightmost location where we can
plant a tree.

If we do not plant a tree at (x̄ , ȳ), an optimal configuration is given by
f (a′δ, . . . , a

′
n−δ), where a′y = ay if y ̸= ȳ and a′ȳ = aȳ − 1.

If we plant a tree at (x̄ , ȳ), an optimal configuration is given by
f (a′δ, . . . , a

′
n−δ) ∪ {(x̄ , ȳ)}, where a′y is the largest integer ≤ ay such

that locations (a′y , y) and (x̄ , ȳ) are at distance ≥ 2r .

Let f (a1, . . . , an−1) be the best of the two configurations found above.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

To compute f (a1, . . . , an−1) in general, let x̄ = max{a1, . . . , an−1}, and
let ȳ be such that aȳ = x̄ . This is a rightmost location where we can
plant a tree.

If we do not plant a tree at (x̄ , ȳ), an optimal configuration is given by
f (a′δ, . . . , a

′
n−δ), where a′y = ay if y ̸= ȳ and a′ȳ = aȳ − 1.

If we plant a tree at (x̄ , ȳ), an optimal configuration is given by
f (a′δ, . . . , a

′
n−δ) ∪ {(x̄ , ȳ)}, where a′y is the largest integer ≤ ay such

that locations (a′y , y) and (x̄ , ȳ) are at distance ≥ 2r .

Let f (a1, . . . , an−1) be the best of the two configurations found above.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

To compute f (a1, . . . , an−1) in general, let x̄ = max{a1, . . . , an−1}, and
let ȳ be such that aȳ = x̄ . This is a rightmost location where we can
plant a tree.

If we do not plant a tree at (x̄ , ȳ), an optimal configuration is given by
f (a′δ, . . . , a

′
n−δ), where a′y = ay if y ̸= ȳ and a′ȳ = aȳ − 1.

If we plant a tree at (x̄ , ȳ), an optimal configuration is given by
f (a′δ, . . . , a

′
n−δ) ∪ {(x̄ , ȳ)}, where a′y is the largest integer ≤ ay such

that locations (a′y , y) and (x̄ , ȳ) are at distance ≥ 2r .

Let f (a1, . . . , an−1) be the best of the two configurations found above.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

The number of recursive calls is larger for small r , so it can be useful to
solve by hand the small r cases (as shown at the beginning).

Achtung! Already for r ∈
(
1,

√
5
2

]
, the solution is not “obvious”:

24 trees 24 trees 25 trees!

Alternatively to the presented solution, one can use a generic max-clique
algorithm and pre-compute all optimal configurations offline.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

The number of recursive calls is larger for small r , so it can be useful to
solve by hand the small r cases (as shown at the beginning).

Achtung! Already for r ∈
(
1,

√
5
2

]
, the solution is not “obvious”:

24 trees 24 trees 25 trees!

Alternatively to the presented solution, one can use a generic max-clique
algorithm and pre-compute all optimal configurations offline.

EUC 2024 judges Problem Analysis Session March 24, 2024

A Grove
authored by: Giovanni Paolini prepared by: Giovanni Paolini

Solution

The number of recursive calls is larger for small r , so it can be useful to
solve by hand the small r cases (as shown at the beginning).

Achtung! Already for r ∈
(
1,

√
5
2

]
, the solution is not “obvious”:

24 trees 24 trees 25 trees!

Alternatively to the presented solution, one can use a generic max-clique
algorithm and pre-compute all optimal configurations offline.

EUC 2024 judges Problem Analysis Session March 24, 2024

