Problem Analysis Session

EUC 2024 judges

March 24, 2024

Our judges and problemsetters

- Federico Glaudo (Chief judge)
- Lucian Bicsi
- Martin Kacer
- Petr Mitrichev

■ Giovanni Paolini

- Anton Trygub

■ Michael Zündorf

Statistics (at freeze)

Total number of submissions: 657
of which accepted: 277 (~42\%)

Problems attempted/solved

Number of submissions: 66
of which accepted: $52(\sim 79 \%)$

First solved by treenity (University of Cambridge) after 10m

authored By: Anton Trygub Prepared By: Anton Trygub

The problem

- You are given two sets of dishes: appetizers and main dishes.
aUTHORED BY: Anton Trygub Prepared BY: Anton Trygub

The problem

- You are given two sets of dishes: appetizers and main dishes.
- Each dish has spiciness.

Authored By: Anton Trygub Prepared By: Anton Trygub

The problem

- You are given two sets of dishes: appetizers and main dishes.
- Each dish has spiciness.
- Meal is appetizer + main dish

AUTHORED BY: Anton Trygub Prepared BY: Anton Trygub

The problem

- You are given two sets of dishes: appetizers and main dishes.
- Each dish has spiciness.
- Meal is appetizer + main dish
- The charm of a meal is defined as an absolute value of the difference in these spicinesses.

B Charming Meals

AUTHORED BY: Anton Trygub Prepared BY: Anton Trygub

The problem

- You are given two sets of dishes: appetizers and main dishes.
- Each dish has spiciness.
- Meal is appetizer + main dish
- The charm of a meal is defined as an absolute value of the difference in these spicinesses.
- Goal: Form meals in a way that maximizes minimum charm.

B Charming Meals

authored By: Anton Trygub prepared By: Anton Trygub

The problem

- You are given two sets of dishes: appetizers and main dishes.
- Each dish has spiciness.
- Meal is appetizer + main dish
- The charm of a meal is defined as an absolute value of the difference in these spicinesses.
- Goal: Form meals in a way that maximizes minimum charm.

Formal problem

You are given two arrays $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$. Over all permutations ($p_{1}, p_{2}, \ldots, p_{n}$) of $(1,2, \ldots, n)$, find the maximum possible value of

$$
\min \left(\left|a_{1}-b_{p_{1}}\right|,\left|a_{2}-b_{p_{2}}\right|, \ldots,\left|a_{n}-b_{p_{n}}\right|\right)
$$

B Charming Meals

Authored By: Anton Trygub Prepared By: Anton Trygub

Lemma (Greedy ordering)

Let c, d be some nondecreasing arrays of length n. If there exists some permutation $\sigma(1), \sigma(2), \ldots, \sigma(n)$, such that $c_{i} \leq d_{\sigma(i)}$ for all i, then $c_{i} \leq d_{i}$ for all i.

B Charming Meals

AUTHORED BY: Anton Trygub Prepared By: Anton Trygub

Lemma (Greedy ordering)

Let c, d be some nondecreasing arrays of length n. If there exists some permutation $\sigma(1), \sigma(2), \ldots, \sigma(n)$, such that $c_{i} \leq d_{\sigma(i)}$ for all i, then $c_{i} \leq d_{i}$ for all i.

Proof.

- Consider any $1 \leq i \leq n$

B Charming Meals

AUTHORED BY: Anton Trygub Prepared BY: Anton Trygub

Lemma (Greedy ordering)

Let c, d be some nondecreasing arrays of length n. If there exists some permutation $\sigma(1), \sigma(2), \ldots, \sigma(n)$, such that $c_{i} \leq d_{\sigma(i)}$ for all i, then $c_{i} \leq d_{i}$ for all i.

Proof.

- Consider any $1 \leq i \leq n$
- For any $j \geq i$ we have $d_{p_{j}} \geq c_{j} \geq c_{i}$

B Charming Meals

AUTHORED BY: Anton Trygub Prepared BY: Anton Trygub

Lemma (Greedy ordering)

Let c, d be some nondecreasing arrays of length n. If there exists some permutation $\sigma(1), \sigma(2), \ldots, \sigma(n)$, such that $c_{i} \leq d_{\sigma(i)}$ for all i, then $c_{i} \leq d_{i}$ for all i.

Proof.

- Consider any $1 \leq i \leq n$
- For any $j \geq i$ we have $d_{p_{j}} \geq c_{j} \geq c_{i}$
- There can be at most $i-1 j$ s with $d_{j}<c_{i} \Longrightarrow d_{i} \geq c_{i}$
authored By: Anton Trygub Prepared By: Anton Trygub

Assume $a_{1} \leq a_{2} \leq \ldots \leq a_{n}, b_{1} \leq b_{2} \leq \ldots \leq b_{n}$.

B Charming Meals

authored By: Anton Trygub prepared By: Anton Trygub

Assume $a_{1} \leq a_{2} \leq \ldots \leq a_{n}, b_{1} \leq b_{2} \leq \ldots \leq b_{n}$.
Consider some optimal pairing, assume we paired a_{i} with $b_{\sigma(i)}$, and got a minimum charm of k. Let's call pairs with $a_{i}+k \leq b_{\sigma(i)}$ small, and pairs with $a_{i} \geq b_{\sigma(i)}+k$ large.

B Charming Meals

authored By: Anton Trygub prepared By: Anton Trygub

Assume $a_{1} \leq a_{2} \leq \ldots \leq a_{n}, b_{1} \leq b_{2} \leq \ldots \leq b_{n}$.
Consider some optimal pairing, assume we paired a_{i} with $b_{\sigma(i)}$, and got a minimum charm of k. Let's call pairs with $a_{i}+k \leq b_{\sigma(i)}$ small, and pairs with $a_{i} \geq b_{\sigma(i)}+k$ large.

Observation 1

For elements of small pairs, we can assume they are paired in a sorted order. Same for large pairs.

B Charming Meals

AUTHORED BY: Anton Trygub Prepared BY: Anton Trygub

Assume $a_{1} \leq a_{2} \leq \ldots \leq a_{n}, b_{1} \leq b_{2} \leq \ldots \leq b_{n}$.
Consider some optimal pairing, assume we paired a_{i} with $b_{\sigma(i)}$, and got a minimum charm of k. Let's call pairs with $a_{i}+k \leq b_{\sigma(i)}$ small, and pairs with $a_{i} \geq b_{\sigma(i)}+k$ large.

Observation 1

For elements of small pairs, we can assume they are paired in a sorted order. Same for large pairs.

Proof.

For small pairs, we have $a_{i} \leq b_{p_{i}}+k$, so we can apply the greedy ordering lemma.

B Charming Meals

Authored By: Anton Trygub prepared By: Anton Trygub

Observation 2

Let the number of small pairs be t. Then we can assume that we paired smallest $t a_{i} s$ with largest $t b_{i} \mathrm{~s}$, and largest $n-t a_{i} \mathrm{~s}$ with smallest $n-t b_{i} \mathrm{~s}$, and we will still have a charm of at least k.

B Charming Meals

Authored By: Anton Trygub prepared By: Anton Trygub

Observation 2

Let the number of small pairs be t. Then we can assume that we paired smallest $t a_{i} s$ with largest $t b_{i} \mathrm{~s}$, and largest $n-t a_{i} \mathrm{~s}$ with smallest $n-t b_{i} \mathrm{~s}$, and we will still have a charm of at least k.

More formally:

- For $1 \leq i \leq t$, pair a_{i} with $b_{i+(n-t)}$;
- For $t+1 \leq i \leq n$, pair the a_{i} with b_{i-t}.

B Charming Meals

authored By: Anton Trygub prepared By: Anton Trygub

Observation 2

Let the number of small pairs be t. Then we can assume that we paired smallest $t a_{i} s$ with largest $t b_{i} \mathrm{~s}$, and largest $n-t a_{i} \mathrm{~s}$ with smallest $n-t b_{i} \mathrm{~s}$, and we will still have a charm of at least k.

More formally:

- For $1 \leq i \leq t$, pair a_{i} with $b_{i+(n-t)}$;
- For $t+1 \leq i \leq n$, pair the a_{i} with b_{i-t}.

Proof.

Trivial greedy!

B Charming Meals

AuTHORED BY: Anton Trygub Prepared By: Anton Trygub

Solution

- Sort $a_{i} \mathrm{~s}, b_{i} \mathrm{~s}$.

B Charming Meals

AuTHORED BY: Anton Trygub Prepared By: Anton Trygub

Solution

- Sort $a_{i} \mathrm{~s}, b_{i} \mathrm{~s}$.
- For each t from 0 to n :

B Charming Meals

```
authored By: Anton Trygub prepared By: Anton Trygub
```


Solution

- Sort $a_{i} \mathbf{s}, b_{i} \mathrm{~s}$.
- For each t from 0 to n :
- Find the minimum charm when the smallest $t a_{i} s$ are paired with largest $t b_{i} \mathrm{~s}$, and the largest $n-t a_{i} \mathrm{~s}$ with the smallest $n-t b_{i} \mathrm{~s}$.

B Charming Meals

authored By: Anton Trygub prepared By: Anton Trygub

Solution

- Sort $a_{i} \mathbf{s}, b_{i} \mathrm{~s}$.
- For each t from 0 to n :
- Find the minimum charm when the smallest $t a_{i} s$ are paired with largest $t b_{i} \mathrm{~s}$, and the largest $n-t a_{i} \mathrm{~s}$ with the smallest $n-t b_{i} \mathrm{~s}$.
- Return the largest of these values

B Charming Meals

authored By: Anton Trygub prepared By: Anton Trygub

Solution

- Sort $a_{i} \mathbf{s}, b_{i} \mathrm{~s}$.
- For each t from 0 to n :
- Find the minimum charm when the smallest $t a_{i} s$ are paired with largest $t b_{i} \mathrm{~s}$, and the largest $n-t a_{i} \mathrm{~s}$ with the smallest $n-t b_{i} \mathrm{~s}$.
- Return the largest of these values

B Charming Meals

authored By: Anton Trygub prepared By: Anton Trygub

Solution

- Sort $a_{i} \mathrm{~s}, b_{i} \mathrm{~s}$.
- For each t from 0 to n :
- Find the minimum charm when the smallest $t a_{i} s$ are paired with largest $t b_{i} \mathrm{~s}$, and the largest $n-t a_{i} \mathrm{~s}$ with the smallest $n-t b_{i} \mathrm{~s}$.
- Return the largest of these values

Running time: $O\left(n^{2}\right)$.

Number of submissions: 114 of which accepted: $52(\sim 46 \%)$

First solved by Heroes of the C (Universidade do Porto) after 13m

The problem

Given n non-overlapping disks on the plane, determine whether you can change their radii so that tangent disks remain tangent, there is no overlap, and the sum of all radii strictly decreases.

The problem

Given n non-overlapping disks on the plane, determine whether you can change their radii so that tangent disks remain tangent, there is no overlap, and the sum of all radii strictly decreases.

Solution

- If we change the radius of a disk by δ, the radius of any tangent disk has to change by $-\delta$.

Solution

- In general, if we change the radii by real numbers $\delta_{1}, \ldots, \delta_{n}$, we must have $\delta_{i}=-\delta_{j}$ whenever the i-th and j-th disks are tangent.

Solution

- In general, if we change the radii by real numbers $\delta_{1}, \ldots, \delta_{n}$, we must have $\delta_{i}=-\delta_{j}$ whenever the i-th and j-th disks are tangent.
- This condition is also sufficient, provided that $\delta_{1}, \ldots, \delta_{n}$ are small enough in absolute value (to avoid overlaps and to keep all the radii positive).

Solution

- In general, if we change the radii by real numbers $\delta_{1}, \ldots, \delta_{n}$, we must have $\delta_{i}=-\delta_{j}$ whenever the i-th and j-th disks are tangent.
- This condition is also sufficient, provided that $\delta_{1}, \ldots, \delta_{n}$ are small enough in absolute value (to avoid overlaps and to keep all the radii positive).
- Build the graph that describes the tangency relation between the disks:

Solution

- If a connected component has an odd cycle, the radii of the disks in that component cannot be changed.

Solution

- If a connected component has an odd cycle, the radii of the disks in that component cannot be changed.

Solution

- If a connected component has an odd cycle, the radii of the disks in that component cannot be changed.

Solution

- If a connected component has an odd cycle, the radii of the disks in that component cannot be changed.

Solution

- If a connected component has an odd cycle, the radii of the disks in that component cannot be changed.

Solution

- If a connected component has an odd cycle, the radii of the disks in that component cannot be changed.

Solution

- If a connected component has an odd cycle, the radii of the disks in that component cannot be changed.

- If a connected component has no odd cycles, then it is bipartite, and we can change radii of white-colored disks by $+\delta$ and black-colored by $-\delta$.

Solution

- To strictly decrease the sum of the radii, we need a bipartite connected component with a different number of white and black disks.

Not good

Good

Solution

- To strictly decrease the sum of the radii, we need a bipartite connected component with a different number of white and black disks.

Not good

Good

- To summarize:

Solution

- To strictly decrease the sum of the radii, we need a bipartite connected component with a different number of white and black disks.

Not good

Good

- To summarize:
- Construct the tangency graph $-O\left(n^{2}\right)$ is enough.

Disks

Solution

- To strictly decrease the sum of the radii, we need a bipartite connected component with a different number of white and black disks.

Not good

Good

- To summarize:
- Construct the tangency graph - $O\left(n^{2}\right)$ is enough.
- Visit each connected component, check if it is bipartite and the number of white and black disks is different - in $O(n)$.

Solution

- To strictly decrease the sum of the radii, we need a bipartite connected component with a different number of white and black disks.

Not good

Good

- To summarize:
- Construct the tangency graph - $O\left(n^{2}\right)$ is enough.
- Visit each connected component, check if it is bipartite and the number of white and black disks is different - in $O(n)$.
- The answer is YES if and only if at least one component is good.

Number of submissions: 79 of which accepted: $51(\sim 65 \%)$

First solved by $<(\mathrm{OvO})>$ (Saarland University) after 17 m

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all ants to the same vertex when you can only move ants from vertex u to vertex v if v does not contain less ants.

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all ants to the same vertex when you can only move ants from vertex u to vertex v if v does not contain less ants.

First Solution

- Since ants can not move to an empty vertex the the region where of non empty homes always needs to stay connected.

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all ants to the same vertex when you can only move ants from vertex u to vertex v if v does not contain less ants.

First Solution

- Since ants can not move to an empty vertex the the region where of non empty homes always needs to stay connected.
- Therefore, only ants at a leaf of the tree (of non empty vertices) can ever move and they can only move in one direction.

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all ants to the same vertex when you can only move ants from vertex u to vertex v if v does not contain less ants.

First Solution

- Since ants can not move to an empty vertex the the region where of non empty homes always needs to stay connected.
- Therefore, only ants at a leaf of the tree (of non empty vertices) can ever move and they can only move in one direction.
- Notice that if the smallest group of ants at a leaf can not move the solution is impossible (all other leaf groups are larger and can therefore also never be merged into the parent group of the smallest group)

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all ants to the same vertex when you can only move ants from vertex u to vertex v if v does not contain less ants.

First Solution

- Since ants can not move to an empty vertex the the region where of non empty homes always needs to stay connected.
- Therefore, only ants at a leaf of the tree (of non empty vertices) can ever move and they can only move in one direction.
- Notice that if the smallest group of ants at a leaf can not move the solution is impossible (all other leaf groups are larger and can therefore also never be merged into the parent group of the smallest group)
- We can simply simulate this process.

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all ants to the same vertex when you can only move ants from vertex u to vertex v if v does not contain less ants.

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all ants to the same vertex when you can only move ants from vertex u to vertex v if v does not contain less ants.

Second Solution

- Notice that the centroids of the tree are the only homes where all ants can gather up.

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all ants to the same vertex when you can only move ants from vertex u to vertex v if v does not contain less ants.

Second Solution

- Notice that the centroids of the tree are the only homes where all ants can gather up.
- For a fixed root we can can greedily simulate the process with a DFS for each centroid.

The problem

Given a tree T where one ant is at every vertex. Is it possible to move all ants to the same vertex when you can only move ants from vertex u to vertex v if v does not contain less ants.

Second Solution

- Notice that the centroids of the tree are the only homes where all ants can gather up.
- For a fixed root we can can greedily simulate the process with a DFS for each centroid.
- Solve problem for all subtrees, sort them by ascending size and try to merge them into the parent.

Number of submissions: 114 of which accepted: $42(\sim 37 \%)$

First solved by KNU_0_GB_RAM (Taras Shevchenko National University of Kyiv) after 4h 5m

The problem

Given n sets $S_{1}, S_{2}, \ldots, S_{n}$ of activities, find a pair (a, b) such that all three sets $S_{a} \backslash S_{b}, S_{b} \backslash S_{a}, S_{a} \cap S_{b}$ are non-empty.

The problem

Given n sets $S_{1}, S_{2}, \ldots, S_{n}$ of activities, find a pair (a, b) such that all three sets $S_{a} \backslash S_{b}, S_{b} \backslash S_{a}, S_{a} \cap S_{b}$ are non-empty.

Solution

- A pair (a, b) is good if and only if S_{a} and S_{b} are neither disjoint nor one included in the other.

The problem

Given n sets $S_{1}, S_{2}, \ldots, S_{n}$ of activities, find a pair (a, b) such that all three sets $S_{a} \backslash S_{b}, S_{b} \backslash S_{a}, S_{a} \cap S_{b}$ are non-empty.

Solution

- A pair (a, b) is good if and only if S_{a} and S_{b} are neither disjoint nor one included in the other.
- If there are no such good pairs, then the activities must induce a tree structure!

The problem

Given n sets $S_{1}, S_{2}, \ldots, S_{n}$ of activities, find a pair (a, b) such that all three sets $S_{a} \backslash S_{b}, S_{b} \backslash S_{a}, S_{a} \cap S_{b}$ are non-empty.

Solution

- A pair (a, b) is good if and only if S_{a} and S_{b} are neither disjoint nor one included in the other.
- If there are no such good pairs, then the activities must induce a tree structure!
- Rough idea: try to write a checker by building such a tree, and see if/when it fails.

Top-down approach

Top-down approach

- Sort the activity sets in decreasing order of lengths

Top-down approach

- Sort the activity sets in decreasing order of lengths
- For all activity sets S_{i} in this order, create a parent-child relationship $j=p(i)$ with the last processed index j that contains some activity (or -1 , if there is no such index)

Top-down approach

- Sort the activity sets in decreasing order of lengths
- For all activity sets S_{i} in this order, create a parent-child relationship $j=p(i)$ with the last processed index j that contains some activity (or -1 , if there is no such index)
- If $j \neq-1$ and $S_{i} \nsubseteq S_{j}$, then (i, j) is a good pair

Top-down approach

- Sort the activity sets in decreasing order of lengths
- For all activity sets S_{i} in this order, create a parent-child relationship $j=p(i)$ with the last processed index j that contains some activity (or -1 , if there is no such index)
- If $j \neq-1$ and $S_{i} \nsubseteq S_{j}$, then (i, j) is a good pair
- If some activity $x \in S_{i}$ is also in some other set S_{k} where $p(k)=p(i)$, then (i, k) is a good pair

Top-down approach

- Sort the activity sets in decreasing order of lengths
- For all activity sets S_{i} in this order, create a parent-child relationship $j=p(i)$ with the last processed index j that contains some activity (or -1 , if there is no such index)
- If $j \neq-1$ and $S_{i} \nsubseteq S_{j}$, then (i, j) is a good pair
- If some activity $x \in S_{i}$ is also in some other set S_{k} where $p(k)=p(i)$, then (i, k) is a good pair
- Otherwise, the activity sets still form a tree, therefore no good pairs exist (yet)

Top-down approach

- Sort the activity sets in decreasing order of lengths
- For all activity sets S_{i} in this order, create a parent-child relationship $j=p(i)$ with the last processed index j that contains some activity (or -1 , if there is no such index)
- If $j \neq-1$ and $S_{i} \nsubseteq S_{j}$, then (i, j) is a good pair
- If some activity $x \in S_{i}$ is also in some other set S_{k} where $p(k)=p(i)$, then (i, k) is a good pair
- Otherwise, the activity sets still form a tree, therefore no good pairs exist (yet)
- Complexity is $O(k \log k)$ or $O(k)$, where k is the total number of activities, depending on whether one uses ordered sets or hash maps.

Top-down approach

- Sort the activity sets in decreasing order of lengths
- For all activity sets S_{i} in this order, create a parent-child relationship $j=p(i)$ with the last processed index j that contains some activity (or -1 , if there is no such index)
- If $j \neq-1$ and $S_{i} \nsubseteq S_{j}$, then (i, j) is a good pair
- If some activity $x \in S_{i}$ is also in some other set S_{k} where $p(k)=p(i)$, then (i, k) is a good pair
- Otherwise, the activity sets still form a tree, therefore no good pairs exist (yet)
- Complexity is $O(k \log k)$ or $O(k)$, where k is the total number of activities, depending on whether one uses ordered sets or hash maps.
- It is possible to implement this solution in $O(k)$ using just arrays, but this is not required. Alternative complexities such as $O(k \sqrt{k})$ should also pass, with careful implementation.

Number of submissions: 103 of which accepted: 41 ($\sim 40 \%$)

First solved by Zagreb 1 (University of Zagreb) after 49m

The problem

Devise an itinerary to drive professors to their corresponding classes, without reaching the same building twice.

The problem

Devise an itinerary to drive professors to their corresponding classes, without reaching the same building twice.

Solution...

- Ignore professors that are already in a proper building.

The problem

Devise an itinerary to drive professors to their corresponding classes, without reaching the same building twice.

Solution...

- Ignore professors that are already in a proper building.
- Pick up a professor from some building and drive them to a building where a corresponding class is held.

The problem

Devise an itinerary to drive professors to their corresponding classes, without reaching the same building twice.

Solution...

- Ignore professors that are already in a proper building.
- Pick up a professor from some building and drive them to a building where a corresponding class is held.
- How to make sure we don't visit the same place twice?

The problem

Devise an itinerary to drive professors to their corresponding classes, without reaching the same building twice.

Solution...

- Ignore professors that are already in a proper building.
- Pick up a professor from some building and drive them to a building where a corresponding class is held.
- How to make sure we don't visit the same place twice?
- How to implement such a strategy with a positive attitude?

Scooter

The problem

Devise an itinerary to drive professors to their corresponding classes, without reaching the same building twice.

Solution...

- Ignore professors that are already in a proper building.
- Pick up a professor from some building and drive them to a building where a corresponding class is held.
- How to make sure we don't visit the same place twice?
- How to implement such a strategy with a positive attitude?
- Achtung! Don't rush with the implementation! You might regret it...

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).
- The problem becomes easier!

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).
- The problem becomes easier!

1. Drive to a building where there's a professor and no class, and drop them off at a building where there is a corresponding class.

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).
- The problem becomes easier!

1. Drive to a building where there's a professor and no class, and drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones which don't have any

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).
- The problem becomes easier!

1. Drive to a building where there's a professor and no class, and drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones which don't have any
3. Repeat...

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).
- The problem becomes easier!

1. Drive to a building where there's a professor and no class, and drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones which don't have any
3. Repeat...

- Key condition: There is a building with a professor and no class.

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).
- The problem becomes easier!

1. Drive to a building where there's a professor and no class, and drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones which don't have any
3. Repeat...

- Key condition: There is a building with a professor and no class.
- Convert the initial problem to an instance of this simpler variant.

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).
- The problem becomes easier!

1. Drive to a building where there's a professor and no class, and drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones which don't have any
3. Repeat...

- Key condition: There is a building with a professor and no class.
- Convert the initial problem to an instance of this simpler variant.
- Remove all "excess" professors one by one.

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).
- The problem becomes easier!

1. Drive to a building where there's a professor and no class, and drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones which don't have any
3. Repeat...

- Key condition: There is a building with a professor and no class.
- Convert the initial problem to an instance of this simpler variant.
- Remove all "excess" professors one by one.
- Prioritize removing professors from buildings where classes are held.

Solution!

- Let's imagine that there are the same number of math professors as there are math classes (same with computer science).
- The problem becomes easier!

1. Drive to a building where there's a professor and no class, and drop them off at a building where there is a corresponding class.
2. Prioritize the buildings where there are professors to the ones which don't have any
3. Repeat...

- Key condition: There is a building with a professor and no class.
- Convert the initial problem to an instance of this simpler variant.
- Remove all "excess" professors one by one.
- Prioritize removing professors from buildings where classes are held.
- Complexity: $O(n)$
authored by: Anton Trygub prepared by: Anton Trygub

Number of submissions: 54 of which accepted: 20 ($\sim 37 \%$)

First solved by NewJeans (University of Oxford) after 1h 6 m

authored by: Anton Trygub prepared by: Anton Trygub

The problem

- You are given n positive integers $x_{1}, x_{2}, \ldots, x_{n}$.
- You want to split them into three groups of sizes n_{a}, n_{b}, n_{c} so that:
- Let s_{a}, s_{b}, s_{c} be the sums of numbers in these groups. Then s_{a}, s_{b}, s_{c} are the sides of a triangle with positive area.

K Make Triangle

authored by: Anton Trygub prepared by: Anton Trygub

The problem

- You are given n positive integers $x_{1}, x_{2}, \ldots, x_{n}$.
- You want to split them into three groups of sizes n_{a}, n_{b}, n_{c} so that:
- Let s_{a}, s_{b}, s_{c} be the sums of numbers in these groups. Then s_{a}, s_{b}, s_{c} are the sides of a triangle with positive area.

Formal problem

Doesn't get more formal than that.

Wlog $n_{a} \leq n_{b} \leq n_{c}$, and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.
authored by: Anton Trygub Prepared By: Anton Trygub

Wlog $n_{a} \leq n_{b} \leq n_{c}$, and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.
Let the sum of all numbers be S. We just need the sum in each group to be smaller than $\frac{S}{2}$.
authored by: Anton Trygub prepared By: Anton Trygub

Wlog $n_{a} \leq n_{b} \leq n_{c}$, and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.
Let the sum of all numbers be S. We just need the sum in each group to be smaller than $\frac{S}{2}$.

What are some obvious necessary constraints?
authored by: Anton Trygub prepared By: Anton Trygub

Wlog $n_{a} \leq n_{b} \leq n_{c}$, and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.
Let the sum of all numbers be S. We just need the sum in each group to be smaller than $\frac{S}{2}$.
What are some obvious necessary constraints?
■ The largest group is not too large: $x_{1}+x_{2}+\ldots+x_{n_{c}}<\frac{S}{2}$;

Wlog $n_{a} \leq n_{b} \leq n_{c}$, and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.
Let the sum of all numbers be S. We just need the sum in each group to be smaller than $\frac{S}{2}$.
What are some obvious necessary constraints?
■ The largest group is not too large: $x_{1}+x_{2}+\ldots+x_{n_{c}}<\frac{S}{2}$;

- The largest item is not too large: $x_{n}+\left(x_{1}+x_{2}+\ldots+x_{n_{a}-1}\right)<\frac{S}{2}$.

Wlog $n_{a} \leq n_{b} \leq n_{c}$, and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.
Let the sum of all numbers be S. We just need the sum in each group to be smaller than $\frac{S}{2}$.
What are some obvious necessary constraints?
■ The largest group is not too large: $x_{1}+x_{2}+\ldots+x_{n_{c}}<\frac{S}{2}$;

- The largest item is not too large: $x_{n}+\left(x_{1}+x_{2}+\ldots+x_{n_{a}-1}\right)<\frac{S}{2}$. Is it enough?

Wlog $n_{a} \leq n_{b} \leq n_{c}$, and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.
Let the sum of all numbers be S. We just need the sum in each group to be smaller than $\frac{S}{2}$.
What are some obvious necessary constraints?
■ The largest group is not too large: $x_{1}+x_{2}+\ldots+x_{n_{c}}<\frac{S}{2}$;

- The largest item is not too large: $x_{n}+\left(x_{1}+x_{2}+\ldots+x_{n_{a}-1}\right)<\frac{S}{2}$. Is it enough?

Of course, as in all my problems.

Wlog $n_{a} \leq n_{b} \leq n_{c}$, and $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$.
Let the sum of all numbers be S. We just need the sum in each group to be smaller than $\frac{S}{2}$.
What are some obvious necessary constraints?

- The largest group is not too large: $x_{1}+x_{2}+\ldots+x_{n_{c}}<\frac{S}{2}$;
- The largest item is not too large: $x_{n}+\left(x_{1}+x_{2}+\ldots+x_{n_{a}-1}\right)<\frac{S}{2}$. Is it enough?

Of course, as in all my problems.
But we need construction too...

Let's put elements into groups from largest to smallest. How to check if we can put an element into a given group?

K Make Triangle

Let's put elements into groups from largest to smallest. How to check if we can put an element into a given group?

Assume we already placed a few largest numbers. Assume current sum in group g is S_{g}, the number of empty spots in group g is n_{g}^{\prime} for $g \in\{a, b, c\}$, and there are $n_{a}^{\prime}+n_{b}^{\prime}+n_{c}^{\prime}=n^{\prime}$ numbers remaining, $x_{1} \leq x_{2} \leq \ldots \leq x_{n^{\prime}}$.

K Make Triangle

Let's put elements into groups from largest to smallest. How to check if we can put an element into a given group?

Assume we already placed a few largest numbers. Assume current sum in group g is S_{g}, the number of empty spots in group g is n_{g}^{\prime} for $g \in\{a, b, c\}$, and there are $n_{a}^{\prime}+n_{b}^{\prime}+n_{c}^{\prime}=n^{\prime}$ numbers remaining, $x_{1} \leq x_{2} \leq \ldots \leq x_{n^{\prime}}$. What are some obvious constraints here?

K Make Triangle

Let's put elements into groups from largest to smallest. How to check if we can put an element into a given group?

Assume we already placed a few largest numbers. Assume current sum in group g is S_{g}, the number of empty spots in group g is n_{g}^{\prime} for $g \in\{a, b, c\}$, and there are $n_{a}^{\prime}+n_{b}^{\prime}+n_{c}^{\prime}=n^{\prime}$ numbers remaining, $x_{1} \leq x_{2} \leq \ldots \leq x_{n^{\prime}}$. What are some obvious constraints here?

- No group is too large: for any group g we have

$$
S_{g}+x_{1}+x_{2}+\ldots+x_{n_{g}^{\prime}}<\frac{S}{2}
$$

Let's put elements into groups from largest to smallest. How to check if we can put an element into a given group?

Assume we already placed a few largest numbers. Assume current sum in group g is S_{g}, the number of empty spots in group g is n_{g}^{\prime} for $g \in\{a, b, c\}$, and there are $n_{a}^{\prime}+n_{b}^{\prime}+n_{c}^{\prime}=n^{\prime}$ numbers remaining, $x_{1} \leq x_{2} \leq \ldots \leq x_{n^{\prime}}$. What are some obvious constraints here?

- No group is too large: for any group g we have

$$
S_{g}+x_{1}+x_{2}+\ldots+x_{n_{g}^{\prime}}<\frac{S}{2}
$$

■ The largest item is not too large: there exists a group g with $n_{g}^{\prime}>0$, such that

$$
S_{g}+x_{n^{\prime}}+\left(x_{1}+x_{2}+\ldots+x_{n_{g}^{\prime}-1}\right)<\frac{S}{2}
$$

Authored by: Anton Trygub prepared by: Anton Trygub

Proof.

AUTHORED BY: Anton Trygub Prepared BY: Anton Trygub

Proof.

Left as an exercise to the reader.

AUTHORED BY: Anton Trygub Prepared BY: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

- Sort all $x_{i} \mathrm{~s}$, and calculate prefix sums.

AUTHORED BY: Anton Trygub Prepared BY: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

- Sort all $x_{i} \mathrm{~s}$, and calculate prefix sums.
authored By: Anton Trygub Prepared By: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

- Sort all $x_{i} \mathrm{~s}$, and calculate prefix sums.
- Check if conditions hold, if no return NO.
authored By: Anton Trygub Prepared By: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

- Sort all $x_{i} \mathrm{~s}$, and calculate prefix sums.
- Check if conditions hold, if no return NO.

■ For each element from largest to smallest:
authored By: Anton Trygub Prepared By: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

- Sort all $x_{i} \mathrm{~s}$, and calculate prefix sums.
- Check if conditions hold, if no return NO.
- For each element from largest to smallest:
- Try to put it in each group, check if conditions hold.
authored By: Anton Trygub Prepared By: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

- Sort all x_{i} s, and calculate prefix sums.
- Check if conditions hold, if no return NO.
- For each element from largest to smallest:
- Try to put it in each group, check if conditions hold.

■ If no, continue to the next group.
authored By: Anton Trygub Prepared By: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

- Sort all x_{i} s, and calculate prefix sums.
- Check if conditions hold, if no return NO.
- For each element from largest to smallest:
- Try to put it in each group, check if conditions hold.

■ If no, continue to the next group.
authored By: Anton Trygub Prepared By: Anton Trygub

Proof.

Left as an exercise to the reader.

Solution

- Sort all $x_{i} s$, and calculate prefix sums.
- Check if conditions hold, if no return NO.
- For each element from largest to smallest:
- Try to put it in each group, check if conditions hold.
- If no, continue to the next group.

Running time: $O(n \log n)$.

Number of submissions: 44 of which accepted: 10 ($\sim 23 \%$)

First solved by ELTE 1 (Eötvös Loránd University) after 1h 37m

The problem

You are given a complete undirected graph with n vertices and $\leq\left\lfloor\frac{n}{2}\right\rfloor$ edges colored red or blue. Color all remaining edges red or blue so that there is no simple monochromatic path with $>\left\lceil\frac{3 n}{4}\right\rceil$ edges.

D Funny or Scary

The problem

You are given a complete undirected graph with n vertices and $\leq\left\lfloor\frac{n}{2}\right\rfloor$ edges colored red or blue. Color all remaining edges red or blue so that there is no simple monochromatic path with $>\left\lceil\frac{3 n}{4}\right\rceil$ edges.

Solution

- If no edges are colored, split vertices into the small part and the big part.

D Funny or Scary

The problem

You are given a complete undirected graph with n vertices and $\leq\left\lfloor\frac{n}{2}\right\rfloor$ edges colored red or blue. Color all remaining edges red or blue so that there is no simple monochromatic path with $>\left\lceil\frac{3 n}{4}\right\rceil$ edges.

Solution

- If no edges are colored, split vertices into the small part and the big part.
- Max blue path: the size of the big part.

The problem

You are given a complete undirected graph with n vertices and $\leq\left\lfloor\frac{n}{2}\right\rfloor$ edges colored red or blue. Color all remaining edges red or blue so that there is no simple monochromatic path with $>\left\lceil\frac{3 n}{4}\right\rceil$ edges.

Solution

- If no edges are colored, split vertices into the small part and the big part.
- Max blue path: the size of the big part.
- Max red path: two times the size of the small part.

D Funny or Scary

Solution

- Incorrect blue edges are bad: direct to $n-1$.

D Funny or Scary

Solution

- Incorrect blue edges are bad: direct to $n-1$.
- Incorrect red edges are not so bad: +1 .

D Funny or Scary

Solution

- Incorrect blue edges are bad: direct to $n-1$.
- Incorrect red edges are not so bad: +1 .
- Take blue connected components together into small/big.

D Funny or Scary

Solution

- Incorrect blue edges are bad: direct to $n-1$.
- Incorrect red edges are not so bad: +1 .
- Take blue connected components together into small/big.
- Choose red that is $\leq\left\lfloor\frac{n}{4}\right\rfloor$.

D Funny or Scary

Solution

- Incorrect blue edges are bad: direct to $n-1$.
- Incorrect red edges are not so bad: +1 .
- Take blue connected components together into small/big.
- Choose red that is $\leq\left\lfloor\frac{n}{4}\right\rfloor$.
- Make small part of size $\left\lfloor\frac{n}{4}\right\rfloor$ or $\left\lfloor\frac{n}{4}\right\rfloor-1$.

Solution

- Why just $n \leq 24$, the solution is $O\left(n^{2}\right)$?

Solution

- Why just $n \leq 24$, the solution is $O\left(n^{2}\right)$?
- Checker is slow: $O\left(n^{2} \cdot 2^{n}\right)$.

Solution

- Why just $n \leq 24$, the solution is $O\left(n^{2}\right)$?
- Checker is slow: $O\left(n^{2} \cdot 2^{n}\right)$.
- Longest path heuristics are faster, but cannot find the longest paths on the cases we have here: an unbalanced bipartite graph plus a few edges.

Solution

- Why just $n \leq 24$, the solution is $O\left(n^{2}\right)$?
- Checker is slow: $O\left(n^{2} \cdot 2^{n}\right)$.
- Longest path heuristics are faster, but cannot find the longest paths on the cases we have here: an unbalanced bipartite graph plus a few edges.
- $n \leq 24$ allows to skip finding connected components, just try 2^{n} options for the small part.

Number of submissions: 39 of which accepted: $9(\sim 23 \%)$

First solved by Jagiellonian teapots (Jagiellonian University in Krakow) after 2h 18m

J Amanda the Amoeba

The problem

Transform amoeba body from a given initial position to a given final position by moving pixels one-by-one while keeping the body connected at all times.

The problem

Transform amoeba body from a given initial position to a given final position by moving pixels one-by-one while keeping the body connected at all times.

Solution

- Build two trees, one spanning the initial position, one for the final one

The problem

Transform amoeba body from a given initial position to a given final position by moving pixels one-by-one while keeping the body connected at all times.

Solution

- Build two trees, one spanning the initial position, one for the final one
- Remove pixels from the first tree, bottom-up from leaves to its root

The problem

Transform amoeba body from a given initial position to a given final position by moving pixels one-by-one while keeping the body connected at all times.

Solution

- Build two trees, one spanning the initial position, one for the final one
- Remove pixels from the first tree, bottom-up from leaves to its root
- Add those pixels to the second tree, top-down from the root to leaves

The problem

Transform amoeba body from a given initial position to a given final position by moving pixels one-by-one while keeping the body connected at all times.

Solution

- Build two trees, one spanning the initial position, one for the final one
- Remove pixels from the first tree, bottom-up from leaves to its root
- Add those pixels to the second tree, top-down from the root to leaves
- Resolve the cases where those two trees overlap

Solution

The easiest case:

- Remove pixels from the first tree, bottom-up from leaves to its root
- Add those pixels to the second tree, top-down from the root to leaves

Solution

The easiest case:

- Remove pixels from the first tree, bottom-up from leaves to its root
- Add those pixels to the second tree, top-down from the root to leaves

Solution

The easiest case:

- Remove pixels from the first tree, bottom-up from leaves to its root
- Add those pixels to the second tree, top-down from the root to leaves

Solution

The easiest case:

- Remove pixels from the first tree, bottom-up from leaves to its root
- Add those pixels to the second tree, top-down from the root to leaves

Solution

The easiest case:

- Remove pixels from the first tree, bottom-up from leaves to its root
- Add those pixels to the second tree, top-down from the root to leaves

Solution

The easiest case:

- Remove pixels from the first tree, bottom-up from leaves to its root
- Add those pixels to the second tree, top-down from the root to leaves

Solution

The easiest case:

- Remove pixels from the first tree, bottom-up from leaves to its root
- Add those pixels to the second tree, top-down from the root to leaves

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions are further apart?

- Find a path between the two positions
- Fill the path first and the proceed to the final position

Solution

What if the positions overlap? (for start, in one pixel only)

- The shared pixel stays
- Other than that, the same procedure is used

Solution

What if the positions overlap? (for start, in one pixel only)

- The shared pixel stays
- Other than that, the same procedure is used

Solution

What if the positions overlap? (for start, in one pixel only)

- The shared pixel stays
- Other than that, the same procedure is used

Solution

What if the positions overlap? (for start, in one pixel only)

- The shared pixel stays
- Other than that, the same procedure is used

Solution

If the positions overlap in more places:

- Both trees are rooted in the same pixel
- The principle of the algorithm remains the same

Solution

If the positions overlap in more places:

- Both trees are rooted in the same pixel
- The principle of the algorithm remains the same

Solution

If the positions overlap in more places:

- Both trees are rooted in the same pixel
- The principle of the algorithm remains the same

Solution

If the positions overlap in more places:

- If some pixel is to be removed although it belongs to the final position, it must be removed anyway, to keep the body connected (the same pixel will be added back later)

Solution

If the positions overlap in more places:

- If some pixel is to be removed although it belongs to the final position, it must be removed anyway, to keep the body connected (the same pixel will be added back later)

Solution

If the positions overlap in more places:

- If some pixel is to be removed although it belongs to the final position, it must be removed anyway, to keep the body connected (the same pixel will be added back later)

Solution

If the positions overlap in more places:

- If a pixel should be added, but it is already occupied (not removed yet), it is skipped and the algorithm continues with the next pixel
- The respective pixel is marked to not be removed anymore

Solution

If the positions overlap in more places:

- If a pixel should be added, but it is already occupied (not removed yet), it is skipped and the algorithm continues with the next pixel
- The respective pixel is marked to not be removed anymore

Solution

If the positions overlap in more places:

- If a pixel should be added, but it is already occupied (not removed yet), it is skipped and the algorithm continues with the next pixel
- The respective pixel is marked to not be removed anymore

Solution

If the positions overlap in more places:

- If a pixel should be added, but it is already occupied (not removed yet), it is skipped and the algorithm continues with the next pixel
- The respective pixel is marked to not be removed anymore

Solution

If the positions overlap in more places:

- If a pixel should be added, but it is already occupied (not removed yet), it is skipped and the algorithm continues with the next pixel
- The respective pixel is marked to not be removed anymore

Solution

If the positions overlap in more places:

- The respective pixel is marked to not be removed anymore
- When the removal comes to such a pixel, it is skipped

Solution

If the positions overlap in more places:

- The respective pixel is marked to not be removed anymore
- When the removal comes to such a pixel, it is skipped

Solution

If the positions overlap in more places:

- The respective pixel is marked to not be removed anymore
- When the removal comes to such a pixel, it is skipped

The problem

Transform amoeba body from a given initial position to a given final position by moving pixels one-by-one while keeping the body connected at all times.

Solution Summary

1. Build two trees of the two positions, with a path between their roots (the path may possibly be empty)
2. Removal order: the initial tree bottom-up, then the path between
3. Adding order: the path between, then the final tree top-down
4. Consecutively remove pixels one-by-one and add them, in the given order
5. If a pixel should be added but it is already part of the body, it is skipped and must be marked to not be removed later

Number of submissions: 21 of which accepted: $0(\sim 0 \%)$

First solved by N/A after N/A

The problem

We maintain a set of alive cells on the grid. In one operation, we replace $(a, b) \rightarrow(a+1, b)+(a, b+1)$. Initially just $(0,0)$ is alive. Given a set of n forbidden cells, can we get to a state where none of them are alive? We are not allowed to have two copies of the same cell.

The problem

We maintain a set of alive cells on the grid. In one operation, we replace $(a, b) \rightarrow(a+1, b)+(a, b+1)$. Initially just $(0,0)$ is alive. Given a set of n forbidden cells, can we get to a state where none of them are alive? We are not allowed to have two copies of the same cell.

Solution

- We can allow multiple copies of the same cell temporarily, but not in final state.

The problem

We maintain a set of alive cells on the grid. In one operation, we replace $(a, b) \rightarrow(a+1, b)+(a, b+1)$. Initially just $(0,0)$ is alive. Given a set of n forbidden cells, can we get to a state where none of them are alive? We are not allowed to have two copies of the same cell.

Solution

- We can allow multiple copies of the same cell temporarily, but not in final state.
- Given a sequence of operations that has multiple copies of the same cell temporarily, we can reorder to get rid of the multiple copies.

The problem

We maintain a set of alive cells on the grid. In one operation, we replace $(a, b) \rightarrow(a+1, b)+(a, b+1)$. Initially just $(0,0)$ is alive. Given a set of n forbidden cells, can we get to a state where none of them are alive? We are not allowed to have two copies of the same cell.

Solution

- We can allow multiple copies of the same cell temporarily, but not in final state.
- Given a sequence of operations that has multiple copies of the same cell temporarily, we can reorder to get rid of the multiple copies.
- Now the order of operations does not matter!

The problem

We maintain a set of alive cells on the grid. In one operation, we replace $(a, b) \rightarrow(a+1, b)+(a, b+1)$. Initially just $(0,0)$ is alive. Given a set of n forbidden cells, can we get to a state where none of them are alive? We are not allowed to have two copies of the same cell.

Solution

- We can allow multiple copies of the same cell temporarily, but not in final state.
- Given a sequence of operations that has multiple copies of the same cell temporarily, we can reorder to get rid of the multiple copies.
- Now the order of operations does not matter!
- The operations we need to do are uniquely determined, we just need to execute them fast.

Solution

- Go by diagonals $a+b=z$. $d_{a+b, a}$ - the number of occurrences of (a, b).

Solution

- Go by diagonals $a+b=z$. $d_{a+b, a}$ - the number of occurrences of (a, b).
- In the first sample:
- $d_{0}=(1)$

Solution

- Go by diagonals $a+b=z$. $d_{a+b, a}$ - the number of occurrences of (a, b).
- In the first sample:
- $d_{0}=(1)$
- $d_{1}=(1,1)$

Solution

- Go by diagonals $a+b=z$. $d_{a+b, a}$ - the number of occurrences of (a, b).
- In the first sample:
- $d_{0}=(1)$
- $d_{1}=(1,1)$
- $d_{2}=(1,2,1)$

Solution

- Go by diagonals $a+b=z$. $d_{a+b, a}$ - the number of occurrences of (a, b).
- In the first sample:
- $d_{0}=(1)$
- $d_{1}=(1,1)$
- $d_{2}=(1,2,1)$
- $d_{3}=(0,2,2,0)$

Solution

- Go by diagonals $a+b=z$. $d_{a+b, a}$ - the number of occurrences of (a, b).
- In the first sample:
- $d_{0}=(1)$
- $d_{1}=(1,1)$
- $d_{2}=(1,2,1)$
- $d_{3}=(0,2,2,0)$
- $d_{4}=(0,1,2,1,0)$

Solution

- Go by diagonals $a+b=z$. $d_{a+b, a}$ - the number of occurrences of (a, b).
- In the first sample:
- $d_{0}=(1)$
- $d_{1}=(1,1)$
- $d_{2}=(1,2,1)$
- $d_{3}=(0,2,2,0)$
- $d_{4}=(0,1,2,1,0)$
- $d_{5}=(0,0,1,1,0,0)$

Solution

- Go by diagonals $a+b=z$. $d_{a+b, a}$ - the number of occurrences of (a, b).
- In the first sample:
- $d_{0}=(1)$
- $d_{1}=(1,1)$
- $d_{2}=(1,2,1)$
- $d_{3}=(0,2,2,0)$

- $d_{4}=(0,1,2,1,0)$
- $d_{5}=(0,0,1,1,0,0)$
- $d_{6}=(0,0,0,0,0,0,0)$

Solution

- If we get a 3 , one of the adjacent numbers is a 2 , and we never terminate: $3,2 \rightarrow 2,3 \rightarrow \ldots$.

Solution

- If we get a 3 , one of the adjacent numbers is a 2 , and we never terminate: $3,2 \rightarrow 2,3 \rightarrow \ldots$
- If we only have $0,1,2$, and there are no forbidden cells, we will eventually terminate, for example:

$$
1,2,2,2,1 \rightarrow 1,2,2,1 \rightarrow 1,2,1 \rightarrow 1,1 \rightarrow .
$$

Solution

- If we get a 3 , one of the adjacent numbers is a 2 , and we never terminate: $3,2 \rightarrow 2,3 \rightarrow \ldots$
- If we only have $0,1,2$, and there are no forbidden cells, we will eventually terminate, for example:
$1,2,2,2,1 \rightarrow 1,2,2,1 \rightarrow 1,2,1 \rightarrow 1,1 \rightarrow$.
- We have only $O(n)$ steps because without forbidden cells the number of 2 s decreases, so this solution is $O\left(n^{2}\right)$.

Solution

- If we get a 3, one of the adjacent numbers is a 2 , and we never terminate: $3,2 \rightarrow 2,3 \rightarrow \ldots$
- If we only have $0,1,2$, and there are no forbidden cells, we will eventually terminate, for example:
$1,2,2,2,1 \rightarrow 1,2,2,1 \rightarrow 1,2,1 \rightarrow 1,1 \rightarrow$.
- We have only $O(n)$ steps because without forbidden cells the number of 2 s decreases, so this solution is $O\left(n^{2}\right)$.
- To make it $O(n)$, we can notice that we always have either $(0,0, \ldots, 0,1,2,2, \ldots, 2,1,0,0, \ldots, 0)$ or ($0,0, \ldots, 0,2,2,0,0, \ldots, 0$).

Solution

- If we get a 3, one of the adjacent numbers is a 2 , and we never terminate: $3,2 \rightarrow 2,3 \rightarrow \ldots$
- If we only have $0,1,2$, and there are no forbidden cells, we will eventually terminate, for example:
$1,2,2,2,1 \rightarrow 1,2,2,1 \rightarrow 1,2,1 \rightarrow 1,1 \rightarrow$.
- We have only $O(n)$ steps because without forbidden cells the number of 2 s decreases, so this solution is $O\left(n^{2}\right)$.
- To make it $O(n)$, we can notice that we always have either $(0,0, \ldots, 0,1,2,2, \ldots, 2,1,0,0, \ldots, 0)$ or ($0,0, \ldots, 0,2,2,0,0, \ldots, 0$).
- So we just need to maintain two integers and one boolean per diagonal.

E Damage per Second

Number of submissions: 15 of which accepted: $0(\sim 0 \%)$

First solved by N/A after N/A

E Damage per Second

The problem

You are facing n enemies with h_{1}, \ldots, h_{n} health. You have k skill points each can be used to to either increase your damage per hit or your hits per second by one. How should you distribute the skill points to minimize the time needed to kill all enemies.

E Damage per Second

The problem

You are facing n enemies with h_{1}, \ldots, h_{n} health. You have k skill points each can be used to to either increase your damage per hit or your hits per second by one. How should you distribute the skill points to minimize the time needed to kill all enemies.

Formal problem

- Given WLOG $h_{1} \geq h_{2} \geq \cdots \geq h_{n}$.
- Let $H=h_{1}+\cdots+h_{n}$.
- Let $f(x)=\sum_{i=1}^{n}\left\lceil\frac{h_{i}}{x}\right\rceil$.
- Let $g(x)=\frac{f(x)}{k-x}$.
- Find the minimum of $g(x)$ in $[0, k]$.

E Damage per Second

Authored by: Michael Zündorf, Federico Glaudo

Observation 1: the "most interesting" values of x ?

- Look at $g^{\prime}(x)=\frac{H}{x(k-x)}$.

E Damage per Second

Observation 1: the "most interesting" values of x ?

- Look at $g^{\prime}(x)=\frac{H}{x(k-x)}$.
- Notice that $g(x) \geq g^{\prime}(x)$.

E Damage per Second

Observation 1: the "most interesting" values of x ?

- Look at $g^{\prime}(x)=\frac{H}{x(k-x)}$.
- Notice that $g(x) \geq g^{\prime}(x)$.
- The minimum of $g^{\prime}(x)$ is $\frac{k}{2}$.

E Damage per Second

Observation 1: the "most interesting" values of x ?

- Look at $g^{\prime}(x)=\frac{H}{x(k-x)}$.
- Notice that $g(x) \geq g^{\prime}(x)$.
- The minimum of $g^{\prime}(x)$ is $\frac{k}{2}$.
- We expect the minimum of g to be close to $\frac{k}{2}$ as well.

E Damage per Second

Observation 1: the "most interesting" values of x ?

- Look at $g^{\prime}(x)=\frac{H}{x(k-x)}$.
- Notice that $g(x) \geq g^{\prime}(x)$.
- The minimum of $g^{\prime}(x)$ is $\frac{k}{2}$.
- We expect the minimum of g to be close to $\frac{k}{2}$ as well.
- True if there were no good testcases...

E Damage per Second

Authored by: Michael Zündorf, Federico Glaudo

Observation 2: Speeding up the computation of g

- Iterate from $i=1$ to n until $i<\frac{h_{i}}{x} \cdot \log (n)$.

E Damage per Second

Observation 2: Speeding up the computation of g

- Iterate from $i=1$ to n until $i<\frac{h_{i}}{x} \cdot \log (n)$.
- Let q_{x} be the first value of i where the inequality fails.

E Damage per Second

Observation 2: Speeding up the computation of g

- Iterate from $i=1$ to n until $i<\frac{h_{i}}{x} \cdot \log (n)$.
- Let q_{x} be the first value of i where the inequality fails.
- For $q_{x} \leq i \leq n$ the quantity $\left\lceil\frac{h_{i}}{x}\right\rceil$ takes at most $\frac{h_{q_{x}}}{x}$ different values.

E Damage per Second

Observation 2: Speeding up the computation of g

- Iterate from $i=1$ to n until $i<\frac{h_{i}}{x} \cdot \log (n)$.
- Let q_{x} be the first value of i where the inequality fails.
- For $q_{x} \leq i \leq n$ the quantity $\left\lceil\frac{h_{i}}{x}\right\rceil$ takes at most $\frac{h_{q x}}{x}$ different values.
- Then $\sum_{i=q_{x}+1}^{n}\left\lceil\frac{h_{i}}{x}\right\rceil$, can be computed in $O\left(\frac{h_{q_{x}+1}^{x}}{x} \log n\right)=O\left(q_{x}\right)$ with binary search.

E Damage per Second

Observation 2: Speeding up the computation of g

- Iterate from $i=1$ to n until $i<\frac{h_{i}}{x} \cdot \log (n)$.
- Let q_{x} be the first value of i where the inequality fails.
- For $q_{x} \leq i \leq n$ the quantity $\left\lceil\frac{h_{i}}{x}\right\rceil$ takes at most $\frac{h_{q x}}{x}$ different values.
- Then $\sum_{i=q_{x}+1}^{n}\left\lceil\frac{h_{i}}{x}\right\rceil$, can be computed in $O\left(\frac{h_{q_{x}+1}^{x}}{x} \log n\right)=O\left(q_{x}\right)$ with binary search.
- Obviously, $\sum_{i=1}^{q_{x}-1}\left\lceil\frac{h_{i}}{x}\right\rceil$ can also be calculated in $O\left(q_{x}\right)$.

E Damage per Second

Observation 2: Speeding up the computation of g

- Iterate from $i=1$ to n until $i<\frac{h_{i}}{x} \cdot \log (n)$.
- Let q_{x} be the first value of i where the inequality fails.
- For $q_{x} \leq i \leq n$ the quantity $\left\lceil\frac{h_{i}}{x}\right\rceil$ takes at most $\frac{h_{a x}}{x}$ different values.
- Then $\sum_{i=q_{x}+1}^{n}\left\lceil\frac{h_{i}}{x}\right\rceil$, can be computed in $O\left(\frac{h_{q_{x}+1}^{x}}{x} \log n\right)=O\left(q_{x}\right)$ with binary search.
- Obviously, $\sum_{i=1}^{q_{x}-1}\left\lceil\frac{h_{i}}{x}\right\rceil$ can also be calculated in $O\left(q_{x}\right)$.
- We can compute $g(x)$ in $O\left(q_{x}\right)$.

E Damage per Second

Solution

- Maintain the running minimum m of $g(x)$.

E Damage per Second

Solution

- Maintain the running minimum m of $g(x)$.
- Iterate over $\frac{k}{2} \pm 0, \frac{k}{2}-1, \frac{k}{2}+1, \ldots$

E Damage per Second

Solution

- Maintain the running minimum m of $g(x)$.
- Iterate over $\frac{k}{2} \pm 0, \frac{k}{2}-1, \frac{k}{2}+1, \ldots$
- For each x, if $g^{\prime}(x) \geq m$ skip.

E Damage per Second

Solution

- Maintain the running minimum m of $g(x)$.
- Iterate over $\frac{k}{2} \pm 0, \frac{k}{2}-1, \frac{k}{2}+1, \ldots$
- For each x, if $g^{\prime}(x) \geq m$ skip.
- Compute $g(x)$ in $O\left(q_{x}\right)$ and update m accordingly.

E Damage per Second

Solution

- Maintain the running minimum m of $g(x)$.
- Iterate over $\frac{k}{2} \pm 0, \frac{k}{2}-1, \frac{k}{2}+1, \ldots$
- For each x, if $g^{\prime}(x) \geq m$ skip.
- Compute $g(x)$ in $O\left(q_{x}\right)$ and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough?

E Damage per Second

Solution

- Maintain the running minimum m of $g(x)$.
- Iterate over $\frac{k}{2} \pm 0, \frac{k}{2}-1, \frac{k}{2}+1, \ldots$
- For each x, if $g^{\prime}(x) \geq m$ skip.
- Compute $g(x)$ in $O\left(q_{x}\right)$ and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough? Unexpectedly yes!

E Damage per Second

Solution

- Maintain the running minimum m of $g(x)$.
- Iterate over $\frac{k}{2} \pm 0, \frac{k}{2}-1, \frac{k}{2}+1, \ldots$
- For each x, if $g^{\prime}(x) \geq m$ skip.
- Compute $g(x)$ in $O\left(q_{x}\right)$ and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough? Unexpectedly yes!
This algorithm has the remarkable running time $O(k \sqrt{n \log (n)})$.

Number of submissions: 8 of which accepted: $0(\sim 0 \%)$

First solved by N/A after N/A

The problem

Plant as many trees as possible in an $n \times n$ lawn. Trees should be located at integer coordinates, and disks of radius r centered at these locations should not overlap.

An optimal configuration for $n=9, r=1.1$

Solution

- Optimal configurations for small r can be constructed explicitly:

Solution

- Optimal configurations for small r can be constructed explicitly:

- In general, there is a finite number of intervals $(p, q]$ such that the valid configurations are the same for all radii $r \in(p, q]$.

Solution

- Optimal configurations for small r can be constructed explicitly:

$r \in\left(0, \frac{1}{2}\right]$

$r \in\left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right]$

$r \in\left(\frac{\sqrt{2}}{2}, 1\right]$
- In general, there is a finite number of intervals ($p, q]$ such that the valid configurations are the same for all radii $r \in(p, q]$.
- This makes it possible to pre-compute all optimal configurations offline (not necessary, but useful).

Solution

- Let $\delta=\lceil r\rceil$. All trees need to be planted at least δ away from the boundary of the lawn, so their coordinates must satisfy $\delta \leq x, y \leq n-\delta$.

Solution

- Let $\delta=\lceil r\rceil$. All trees need to be planted at least δ away from the boundary of the lawn, so their coordinates must satisfy $\delta \leq x, y \leq n-\delta$.
- For integers $0 \leq a_{\delta}, \ldots, a_{n-\delta} \leq n-\delta$, denote by $f\left(a_{\delta}, \ldots, a_{n-\delta}\right)$ any optimal configuration where we can only plant trees at locations (x, y) satisfying $x \leq a_{y}$.

Solution

- Let $\delta=\lceil r\rceil$. All trees need to be planted at least δ away from the boundary of the lawn, so their coordinates must satisfy $\delta \leq x, y \leq n-\delta$.
- For integers $0 \leq a_{\delta}, \ldots, a_{n-\delta} \leq n-\delta$, denote by $f\left(a_{\delta}, \ldots, a_{n-\delta}\right)$ any optimal configuration where we can only plant trees at locations (x, y) satisfying $x \leq a_{y}$.
- Our task is to compute $f(n-\delta, \ldots, n-\delta)$.

Solution

- Let $\delta=\lceil r\rceil$. All trees need to be planted at least δ away from the boundary of the lawn, so their coordinates must satisfy $\delta \leq x, y \leq n-\delta$.
- For integers $0 \leq a_{\delta}, \ldots, a_{n-\delta} \leq n-\delta$, denote by $f\left(a_{\delta}, \ldots, a_{n-\delta}\right)$ any optimal configuration where we can only plant trees at locations (x, y) satisfying $x \leq a_{y}$.
- Our task is to compute $f(n-\delta, \ldots, n-\delta)$.
- We compute f recursively and store results of all recursive calls (memoization).

Solution

- Let $\delta=\lceil r\rceil$. All trees need to be planted at least δ away from the boundary of the lawn, so their coordinates must satisfy $\delta \leq x, y \leq n-\delta$.
- For integers $0 \leq a_{\delta}, \ldots, a_{n-\delta} \leq n-\delta$, denote by $f\left(a_{\delta}, \ldots, a_{n-\delta}\right)$ any optimal configuration where we can only plant trees at locations (x, y) satisfying $x \leq a_{y}$.
- Our task is to compute $f(n-\delta, \ldots, n-\delta)$.
- We compute f recursively and store results of all recursive calls (memoization).
- If $a_{1}, \ldots, a_{n-1}<\delta$, then $f\left(a_{1}, \ldots, a_{n-1}\right)=\emptyset$, because any tree would be too close to the left boundary.

Solution

- To compute $f\left(a_{1}, \ldots, a_{n-1}\right)$ in general, let $\bar{x}=\max \left\{a_{1}, \ldots, a_{n-1}\right\}$, and let \bar{y} be such that $a_{\bar{y}}=\bar{x}$. This is a rightmost location where we can plant a tree.

Solution

- To compute $f\left(a_{1}, \ldots, a_{n-1}\right)$ in general, let $\bar{x}=\max \left\{a_{1}, \ldots, a_{n-1}\right\}$, and let \bar{y} be such that $a_{\bar{y}}=\bar{x}$. This is a rightmost location where we can plant a tree.
- If we do not plant a tree at (\bar{x}, \bar{y}), an optimal configuration is given by $f\left(a_{\delta}^{\prime}, \ldots, a_{n-\delta}^{\prime}\right)$, where $a_{y}^{\prime}=a_{y}$ if $y \neq \bar{y}$ and $a_{\bar{y}}^{\prime}=a_{\bar{y}}-1$.

Solution

- To compute $f\left(a_{1}, \ldots, a_{n-1}\right)$ in general, let $\bar{x}=\max \left\{a_{1}, \ldots, a_{n-1}\right\}$, and let \bar{y} be such that $a_{\bar{y}}=\bar{x}$. This is a rightmost location where we can plant a tree.
- If we do not plant a tree at (\bar{x}, \bar{y}), an optimal configuration is given by $f\left(a_{\delta}^{\prime}, \ldots, a_{n-\delta}^{\prime}\right)$, where $a_{y}^{\prime}=a_{y}$ if $y \neq \bar{y}$ and $a_{\bar{y}}^{\prime}=a_{\bar{y}}-1$.
- If we plant a tree at (\bar{x}, \bar{y}), an optimal configuration is given by $f\left(a_{\delta}^{\prime}, \ldots, a_{n-\delta}^{\prime}\right) \cup\{(\bar{x}, \bar{y})\}$, where a_{y}^{\prime} is the largest integer $\leq a_{y}$ such that locations $\left(a_{y}^{\prime}, y\right)$ and (\bar{x}, \bar{y}) are at distance $\geq 2 r$.

Solution

- To compute $f\left(a_{1}, \ldots, a_{n-1}\right)$ in general, let $\bar{x}=\max \left\{a_{1}, \ldots, a_{n-1}\right\}$, and let \bar{y} be such that $a_{\bar{y}}=\bar{x}$. This is a rightmost location where we can plant a tree.
- If we do not plant a tree at (\bar{x}, \bar{y}), an optimal configuration is given by $f\left(a_{\delta}^{\prime}, \ldots, a_{n-\delta}^{\prime}\right)$, where $a_{y}^{\prime}=a_{y}$ if $y \neq \bar{y}$ and $a_{\bar{y}}^{\prime}=a_{\bar{y}}-1$.
- If we plant a tree at (\bar{x}, \bar{y}), an optimal configuration is given by $f\left(a_{\delta}^{\prime}, \ldots, a_{n-\delta}^{\prime}\right) \cup\{(\bar{x}, \bar{y})\}$, where a_{y}^{\prime} is the largest integer $\leq a_{y}$ such that locations $\left(a_{y}^{\prime}, y\right)$ and (\bar{x}, \bar{y}) are at distance $\geq 2 r$.
- Let $f\left(a_{1}, \ldots, a_{n-1}\right)$ be the best of the two configurations found above.

Solution

- The number of recursive calls is larger for small r, so it can be useful to solve by hand the small r cases (as shown at the beginning).

Solution

- The number of recursive calls is larger for small r, so it can be useful to solve by hand the small r cases (as shown at the beginning).
- Achtung! Already for $r \in\left(1, \frac{\sqrt{5}}{2}\right]$, the solution is not "obvious":

Solution

- The number of recursive calls is larger for small r, so it can be useful to solve by hand the small r cases (as shown at the beginning).
- Achtung! Already for $r \in\left(1, \frac{\sqrt{5}}{2}\right]$, the solution is not "obvious":

- Alternatively to the presented solution, one can use a generic max-clique algorithm and pre-compute all optimal configurations offline.

