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A Grove
Author: Giovanni Paolini
Preparation: Giovanni Paolini

Let δ = ⌈r⌉. Note that all trees need to be planted at least δ away from the boundary of the lawn,
so their coordinates (x, y) have to satisfy δ ≤ x, y ≤ n− δ.

For integers 0 ≤ aδ, . . . , an−δ ≤ n− δ, denote by f(aδ, . . . , an−δ) any configuration that maximizes
the number of trees while only using locations (x, y) such that x ≤ ay. Our task is to compute
f(n− δ, . . . , n− δ). We compute values of f recursively, and store all results using memoization.

Let x̄ = max(aδ, . . . , an−δ), and let ȳ be such that aȳ = x̄. Note that, if x̄ < δ, then f(aδ, . . . , an−δ) =
∅ because any tree would be too close to the left boundary of the lawn. Assuming that x̄ ≥ δ, we
try to plant or not plant a tree at the location (x̄, ȳ).

If we do not plant a tree at (x̄, ȳ), an optimal configuration is given by f(a′δ, . . . , a
′
n−δ), where

a′y = ay if y ̸= ȳ and a′ȳ = aȳ − 1.

If we plant a tree at (x̄, ȳ), an optimal configuration is given by f(a′δ, . . . , a
′
n−δ)∪{(x̄, ȳ)}, where a′y

is the largest integer ≤ ay such that locations (a′y, y) and (x̄, ȳ) are at distance ≥ 2r.

The number of recursive calls increases as r decreases. For this reason, it can be beneficial to
solve by hand the cases where r is small. For instance, if r ≤ 1/2, then we can plant trees at all
integer coordinates in the interior of the lawn; if 1/2 < r <

√
2/2, we can plant trees at all integer

coordinates (x, y) in the interior of the lawn such that x+ y is even.

If the implementation of the above algorithm is not fast enough, it is also possible to pre-compute
all optimal configurations offline. Indeed, for every n, there is a finite number of intervals (p, q] ⊆ R
such that the valid configurations of trees are the same for all r ∈ (p, q]. The boundaries of these
intervals are of the form

√
a2 + b2/2 for integers 0 ≤ a ≤ b ≤ n. For instance, the first two intervals

are always (0, 1/2] and (1/2,
√
2/2], which we have already encountered above.

Finally, it is also possible to solve this problem using a generic max-clique algorithm, especially in
combination with the above idea to pre-compute optimal configurations offline.
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B Charming Meals
Author: Anton Trygub
Preparation: Anton Trygub

Let’s sort spicinesses, assume a1 ≤ a2 ≤ . . . ≤ an, b1 ≤ b2 ≤ . . . ≤ bn.

Lemma: Let c, d be some nondecreasing arrays of length n. If there exists some permutation
σ(1), σ(2), . . . , σ(n), such that ci ≤ dσ(i) for all i, then ci ≤ di for all i.

Proof: for each i, there can be at most i− 1 ds smaller than ci: dp1 , dp2 , . . . , dpi−1 , as for any j ≥ i
we have dpj ≥ cj ≥ ci.

Consider some optimal pairing, assume we paired ai with bσ(i), and got a minimum charm of k.
Let’s call pairs with ai + k ≤ bσ(i) small, and pairs with ai ≥ bσ(i) + k large. Consider small pairs,
assume there are t of them. Note that, by the lemma, we can assume that ais and bσ(i)s in these
pairs are nondecreasing. Similarly, they are nondecreasing in large pairs.

But then we can just pair smallest t ais with largest t bis, and largest n− t ais with smallest n− t
bis, and we will still have a charm of at least k. More formally:

• For 1 ≤ i ≤ t, pair ai with bi+(n−t);

• For t+ 1 ≤ i ≤ n, pair the ai with bi−t.

So, it’s enough to check such a pairing for each possible 0 ≤ 1 ≤ t ≤ n, and to pick the best one!

Total runtime is O(n2).
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C Annual Ants’ Gathering
Author: Petr Mitrichev
Preparation: Michael Zündorf

First Solution

Since ants can not move to an empty house the region of non-empty homes always needs to stay
connected. Therefore, only ants on a leaf of the tree (of non-empty homes) can ever move and they
can only move in one direction. Further, notice that if the smallest group of ants on a leaf can
not move the solution is impossible (all other leaf groups are larger and can therefore also never be
merged into the parent group of the smallest group). We can simply simulate this process.

Second Solution

Notice that the centroids of the tree are the only homes where all ants can gather up. For a fixed
root we can greedily simulate the process with a DFS for each centroid.
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D Funny or Scary?
Author: Petr Mitrichev
Preparation: Petr Mitrichev

In graph terms, this problem can be formulated as follows: you are given a complete undirected
graph on n vertices. Some of the edges of the graph are already colored with two colors. You
need to color all remaining edges with two colors in such a way that the graph does not have long
monochromatic simple paths.

First of all, what happens when no edges are already colored? It turns out this exact question
is well-studied in mathematics, and the definitive answer was given 57 years ago in the following
paper: L. Gerencsér, A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest Eötvös
Sect. Math. 10 (1967), pp. 167-170. They prove that for any such graph on n vertices there always
exists a monochromatic path with at least ⌊2n3 ⌋ edges, and provide an example of such a graph
where the longest monochromatic path has exactly ⌊2n3 ⌋ edges.

What does their example look like? The key idea is to use a bipartite graph with unbalanced parts.
More specifically, we split all vertices into two groups, the first one of size roughly n

3 , and the second
one of size roughly 2n

3 . We color the edges between the two groups red, and the edges within each
group blue. Now each blue path will have to stay within one of the groups, and therefore will not
be longer than 2n

3 . The red edges form a bipartite graph, so each red path will have to alternate
groups, which means that it will have to go to the smaller group every second step, and since the
smaller group has only n

3 vertices, the path also cannot be longer than 2n
3 .

Sadly, not everyone will have read this seminal paper from 1967, so how can one come up with this
construction during the contest? Since every edge in the complete graph will have one of the two
colors, at least one of the colors will be used by a lot of edges. So we need to come up with examples
of graphs with lots of edges, but no long paths. Disconnected graphs are a natural way to achieve
this, and then we can consider what edges the complement of a disconnected graph must have, and
arrive at the above construction. One other thing one can do when stuck is experimentation: try
generating random complete graphs colored with two colors until you find some examples with no
long monochromatic paths, for example where there is no monochromatic path with n − 1 edges,
and then try to generalize their structure. In fact, the answer to the second sample was generated
in exactly this fashion: we repeatedly tried to color each edge randomly and independenty until
we got a graph with 12 vertices and no monochromatic path with 10 edges. It actually took a few
hours to find just one such graph. Studying this answer could be another way to discover the above
construction, as the funny edges do form an almost-bipartite structure with nodes 5 and 11 in one
part, and the rest in the other part (for example row 5 of the matrix is FFFF.FFFFFSF).

We still need to deal with edges that are already colored, but we also still have some reserves: our
paths do not exceed ⌊2n3 ⌋, while this problem allows paths up to ⌈3n4 ⌉.

How bad is a wrongly colored edge to the above construction? If an edge that is supposed to be red
is actually blue, it is very bad: now the two blue groups are connected, and therefore it is easy to
create a blue path through all vertices. However, if an edge that is supposed to be blue is actually
red, it is not so bad: even when this edge is used in a red path, all “originally” red edges still have to
have one of their endpoints in the smaller group, and therefore the number of originally red edges
in a red path still does not exceed two times the size of the smaller group, so changing one blue

5



2023

2024

Europe

icpc European

Championship

icpc Europe

Contests

icpc global sponsor

programming tools

icpc diamond

multi-regional sponsor

icpc europe

regional sponsor

icpc

sponsor

icpc 
sponsor

The 2024 ICPC European Championship

edge to red increases the boundary on the red path length by at most 1.

We have the freedom to choose which vertex belongs to which group, so we need to use this freedom
to make sure that all edges that are already blue connect vertices within one group, as even one
incorrectly blue edge is bad. This means that we need to find the connected components using the
preexisting blue edges, and then take some of those components to the bigger group and the rest to
the smaller group.

The edges that are already colored red can each increase the boundary on the red path length by
1. If all ⌊n2 ⌋ already colored edges are red, this would increase the path length by ⌊n2 ⌋, which is a
lot. However, we also have the freedom to decide which one out of funny and scary corresponds to
red. Let us choose one that has fewer edges, and therefore the number of already colored red edges
will not exceed ⌊n4 ⌋.

Because the length of the red path can be increased by ⌊n4 ⌋ through the already colored edges, we
need to make the smaller group even smaller: since the red path must not exceed ⌈3n4 ⌉, we can

have at most ⌊ ⌈
3n
4
⌉−⌊n

4
⌋

2 ⌋ vertices in the smaller group, which is roughly n
4 , and more precisely it is

≥ ⌊n4 ⌋.

If the smaller group has ⌊n4 ⌋ vertices, the bigger group has n − ⌊n4 ⌋ = ⌈3n4 ⌉ vertices, which means
that blue paths have at most ⌈3n4 ⌉ − 1 edges. Notice how all pieces of the puzzle come together
now: this is good enough for this problem, but only barely, by 1 edge. So we can allow the smaller
group to have either ⌊n4 ⌋ or ⌊n4 ⌋ − 1 vertices.

The only remaining question is: since we add vertices to groups not one by one, but an entire
preexisting blue edge component at a time, can we actually achieve the required size of the smaller
group? It turns out that we can, using the following simple approach: sort the components in
increasing order of size, and take them in this order to the smaller group until the size of the
smaller group is ⌊n4 ⌋ − 1 or ⌊n4 ⌋.

The only way this could fail is if we jump from at most ⌊n4 ⌋ − 2 to at least ⌊n4 ⌋+ 1, meaning that
the component we have added has at least 3 vertices. But since we add components in increasing
order of size, it means that the remaining components also all have at least 3 vertices, which means
that components with at least 3 vertices cover at least n − (⌊n4 ⌋ − 2) = ⌈3n4 ⌉ + 2 vertices of the
graph. Since we need 2 edges for a component with 3 vertices, and with bigger components we still
need at least 2k

3 edges for a component with k vertices, we need at least 2(⌈ 3n
4
⌉+2)

3 edges to get into

this situation, and 2(⌈ 3n
4
⌉+2)

3 ≥
3n
2
+4

3 >
3n
2
3 = n

2 . So we need more than n
2 edges to get into this

situation, which is impossible under the constraints of the problem, therefore the greedy approach
of taking already blue components in increasing order of size always works.

The solution is complete now, and it runs in time linear in the input size, in other words O(n2). Why
does the problem have the very low limit of n ≤ 24 in this case? The reason is that we also need
to implement the checker that will read your output and check if there are no long monochromatic
paths. For that we use a relatively standard dynamic programming approach that runs in O(n2 ·2n),
sped up using bitmasks to do only O(n · 2n) operations with integers. It takes a few seconds for
n = 24 so we could not go much higher. We have explored using various heuristic approaches to
find the longest monochromatic paths for larger values of n, but it turns out that even though those
heuristic approaches work quite well on random graphs, they actually cannot find the longest path
reliably in the type of graph output by the solution above, namely an unbalanced bipartite graph
with a few additional edges.
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The low value of n allows to simplify the implementation of the above solution in the following
manner: we can skip finding connected components of preexisting blue edges, instead just iterating
over all 2n subsets of vertices as candidates for the smaller group, and then checking if the size of
the smaller group is appropriate and that there are no preexisting blue edges going from the smaller
group to its complement.

7
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E Damage per Second
Author: Michael Zündorf, Federico Glaudo
Preparation: Michael Zündorf

Once the sugar-coating is removed, the problem boils down to:

Let f(x) =
∑n

i=1

⌈
hi
x

⌉
, and g(x) = f(x)

k−x . Find the minimum of g(x).

Sort the values so that h1 ≥ h2 ≥ · · · ≥ hn. Define H := h1 + · · · + hn. From now on, we will
assume that k is even, so that x = k

2 is a valid choice (the case k odd is absolutely equivalent, just
more annoying to write down).

Let us begin with two simple observations.

Observation 1. What are the “most interesting” values of x? If we ignore the ceiling in
the definition of g, we get g(x) ≥ H

x(k−x) whose minimum is achieved by x = k
2 . Unless the values

h1, . . . , hn are well-crafted, we expect the minimum of g to be achieved for an x very close to k
2 .

Observation 2. Speeding up the computation of g. Let us describe a strategy to compute
g(x). Iterate from i = 1 to n until i < hi

x log n. Say that such condition is satisfied for 1 ≤ i ≤ q(x)
and fails for q + 1 (for notational clarity we will omit the dependence of q on x). We compute the
first part of g(x), that is

∑q
i=1⌈

hi
x ⌉, naively in O(q). For q + 1 ≤ i ≤ n the quantity ⌈hi

x ⌉ takes at
most hq+1

x different values. Therefore the second part of g(x), that is
∑n

i=q+1⌈
hi
x ⌉, can be computed

in O(
hq+1

x log n) = O(q) by using binary search.

So, we have described a way to compute g(x) in O(q(x)) where q satisfies hq ≥ qx
logn .

Description of the algorithm. These two observations suggest the following algorithm.

• Maintain the running minimum m of g(x), initializing it as m = g(k2 ).

• Iterate over all x, starting from those closest to k
2 and moving further away.

• For each x, if H
x(k−x) ≥ m then skip this choice of x (as it cannot be a minimizer in view of the

first observation).

• Otherwise compute g(x) in O(q(x)) as described in observation 2 and update m accordingly.

This algorithm produces the correct answer, but is it provably fast enough? Unexpectedly yes! We
will see that this algorithm has the remarkable running time O(

√
n log nk).

Running time analysis. Let us begin by making one further remark about the second observation.
By definition of q(x), we have

H ≥ h1 + · · ·+ hq ≥ qhq ≥
q2x

log n
=⇒ q ≤

√
H log n

x
.

So, we are able to compute g(x) in O(
√

H logn
x ) time. This is awful if H is huge, but can be

potentially very good if H is controlled and x is comparable to k. We will see that the opposite

8
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happens for observation 1: it is very powerful if H is huge and very weak if H is small. So there
is a tradeoff: for H large the first observation is powerful, for H small the second one is powerful.
This will be enough to provide a good running time for the whole algorithm.

Let us now discuss the first observation. For any 1 ≤ x ≤ k − 1,

H

x(k − x)
≤ g(x) ≤ H

x(k − x)
+

n

k − x
.

We want to use this inequality to bound the values of x that we need to check.

We have g(k2 ) ≤
4H
k2

+ 2n
k and H

x(k−x) ≤ g(x). Therefore, if

4H

k2
+
2n

k
<

H

x(k − x)
⇐⇒ k2

4
−
(
x−k

2

)2
= x(k−x) <

H
4H
k2

+ 2n
k

⇐⇒
(
x−k

2

)2
>

k2

4
− H

4H
k2

+ 2n
k

=
nk3

8H + 4nk

we don’t have to check x as it cannot yield the minimum value for g. In particular, we care only
about the values of x that satisfy ∣∣∣x− k

2

∣∣∣ ≤ √
nk3

8H
.

As we anticipated, when H is huge this bound is great, while when H is small it is not particularly
useful.

Conclusion. Now we have all the tools and we can conclude by considering two cases (which,
morally, correspond to H large and H small).

If
√

nk3

8H < k
4 , then the interesting values of x are comparable to k. Thus g(x) can be computed

in O(
√

H logn
k ) and we shall do such computation 2

√
nk3

8H times. So the overall complexity is
O(

√
n log nk).

On the other hand, if
√

nk3

8H ≥ k
4 (which implies H ≤ 2nk) then we use only the second observation to

bound the complexity. Let us assume that we care only about values of x of magnitude comparable
to k, the other cases are easy to handle. Then, the computation of g(x) requires O(q log n). To
compute g(x) for all 1 ≤ x ≤ k, we need

O
( k∑

x=1

√
H log n

x

)
=

√
nk log nO

( k∑
x=1

x−1/2
)
= O(

√
n log nk).

9
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F Dating
Author: Federico Glaudo
Preparation: Lucian Bicsi

After formalizing the statement, we get the following:

Given n sets S1, S2, . . . , Sn of activities, find a pair (a, b) such that all three sets Sa\Sb, Sb\Sa, Sa∩Sb

are non-empty.

In essence, this means that for a pair (a, b) to not be good, it must suffice that Sa and Sb are either
disjoint or one included in the other. Consequently, it means that, if there are no such good pairs,
then the sets must induce a tree structure! In this structure, some vertex u is an ancestor of vertex
v if and only if Sv ⊆ Su.

The solution now can be summarized by the following idea: try to construct the tree (assuming
there are no good pairs), and check for errors along the process (this will, in fact, expose a good
pair). There are multiple ways of achieving that, both top-down and bottom-up (and they are more
or less equivalent). We will describe a solution based on a top-down approach.

Top down approach. Let’s start by sort the activity sets in decreasing order of lengths. For
all activity sets Si in this order, we will create a parent-child relationship j = p(i) with the last
processed index j that contains some activity (or −1, if there is no such index). The activity based
on which we choose j is not relevant, for reasons that will be apparent as follows. After finding such
j (or deciding that j = −1), we have some cases to consider:

1. If j ̸= −1 and Si ̸⊆ Sj , then (i, j) is a good pair, as Sj cannot possibly include Si due to the
length of Sj being at least as much as Si.

2. If some activity x ∈ Si is also in some other set Sk where p(k) = p(i), then (i, k) is a good pair.

3. Otherwise, the activity sets still form a tree, therefore no good pairs exist (yet).

Complexity is O(k log k) or O(k), where k is the total number of activities, depending on whether
one uses ordered sets or hash maps. It is possible to implement this solution in O(k) using just
arrays, but this is not required.

Alternative approach. One may solve this problem without leveraging the tree structure of the
activity sets. It stems from the observation that any good pair (a, b) must have a common element
x. Let’s fix all such x, and sort the sets having x as an element in the order of length. Then,
similarly to the first solution, one may prove that it is sufficient that a set with a smaller length
has an element not present in some set with a larger length. We can solve this by simply keeping
an array which keeps track of existing elements present in the sets, and iterating from right to left.

This approach does not quite work yet, as it has quadratic complexity; however, by considering the
sets with large size (i.e., larger than

√
k) separately than the elements with a small size (i.e. smaller

than
√
k), then one may achieve O(k

√
k) complexity using this approach.

10
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G Scooter
Author: Giovanni Paolini
Preparation: Lucian Bicsi

First and foremost, let’s notice that we can ignore professors that are already in a proper building,
as well as empty buildings (in essence, all positions i such that ci = pi).

More so, if there are no positions i such that ci ̸= pi then we can simply answer YES without doing
any operations.

From this point on, we will assume that for all i, we have ci ̸= pi.

General idea. Intuitively, we would want to iteratively pick up the professor from some building
and drive them to a building where a corresponding class is held. However, we must make sure
to not visit the same place twice. Multiple greedy solutions might solve this, but we also have to
take into account implementation effort and the number of edge cases to consider. In this sense, we
advise the reader to not rush into writing an implementation just yet, and instead try to simplify
the solution as much as possible on paper.

An easier subproblem. The issue with the problem currently is that there is much room for
making choices and, consequently, much room for making an erroneous decision. Let’s consider the
easier subproblem where there are exactly as many professors of a given class types as there are
classes. Even though one might say that this makes the problem tighter, it actually paradoxically
makes it easier! This is mainly because, as tight as it is, there is not much room for bad decisions.

A key observation is that this subproblem (and, as it turns out, the original problem as well) is
impossible if there are no buildings where no class is being held, as there is simply no way of
returning to the starting position to drop off the corresponding professor (note, again, that we are
ignoring positions i with ci = pi).

Therefore, a greedy strategy that works for this subproblem is simply repeatedly choosing a professor
from a building where no class is being held and driving them to one of the buildings where their
class is being held. If one prioritizes buildings where there are professors before those where there
are no professors, the key condition never becomes unsatisfied, thus the problem is solved.

Solving the original problem. Going back, let’s solve the original problem. We can do that by
simply reducing it to the easier version, by removing “excess” professors from some of the buildings.
At the same time, note that we have to make sure the key observation above remains valid through-
out the removal process. One easy and correct way of doing that is, yet again, the greedy approach
of simply prioritizing removing professors from buildings where there are classes to buldings with
no classes.

Final complexity of the solution is O(n).

11
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H Division Avoidance
Author: Petr Mitrichev
Preparation: Petr Mitrichev

Looking at the solution for the sample, the most difficulty seems to come from the condition in
bold: A division of a cell (a, b) can only happen if the cells (a+1, b) and (a, b+1) are not
yet part of the organism. It forces us to clean up space, potentially recursively, before a division
that we want to happen can actually happen.

What happens if we remove this condition, instead allowing to have multiple copies of a cell with the
same coordinates in the organism? Then of course it is possible to avoid any finite set of forbidden
cells, so this version of the problem is not very useful. However, consider the following modification
instead: we allow to have multiple copies of a cell with the same coordinates temporarily, but the
final state of the organism must have at most one copy of any cell, and of course zero copies of the
forbidden cells. It turns out that this modification is equivalent to the original problem!

To see why, consider a sequence of operations that starts from (0, 0) and ends in a valid state as
described above, but has multiple copies of some cells in its intermediate states. We claim that it
is possible to reoder its sequence of operations in such a way that all operations stay valid, but we
never have multiple copies of the same cell. Notice that reodering the operations does not change
the end state, because each operation can be seen as subtracting 1 from the number of occurrences
of the cell (a, b) and adding 1 to the numbers of occurrences of the cells (a + 1, b) and (a, b + 1),
and such subtractions and additions clearly commute.

To avoid getting multiple copies of the same cell, we can repeatedly do the following to produce
a reordering: from all operations that are yet to be done in the reference sequence of operations,
we choose the operation (a, b) such that (a, b) is part of the organism and a + b is maximized.
Maximizing a + b guarantees that we are not going to have two copies of the same cell: when we
decide to divide (a, b), we cannot have (a+ 1, b) in the organism, as otherwise (a+ 1, b) would also
be one of the operations yet to be done (since the final state has at most one cell at (a+ 1, b)), so
we should have chosen (a+ 1, b) as the opeation to do over (a, b) since a+ 1+ b > a+ b, which is a
contradiction.

Now we know that we can focus on what operations to do, and no longer care about the order in
which we do them. It means that we can choose the order that suits us best, and as long as we do
only necessary operations, we will always arrive at exactly the same result. It is natural to go by
diagonals: first consider all operations with a + b = 0, then all operations with a + b = 1, then all
operations with a + b = 2, and so on. The operations with a + b = z only create new cells with
a + b = z + 1, so those operations are independent within each value of z, and we never have to
return to smaller values of z.

This leads to the following solution: we go in increasing order of z, and before processing a given
value of z we know how many copies of each cell with a + b = z we have, as an array dz,a. Now
for each forbidden cell (a, b) with a+ b = z we have to apply division to it dz,a times, which means
that we have to add dz,a to dz+1,a and to dz+1,a+1. Similarly, for each non-forbidden cell we have to
apply division to it max(0, dz,a−1) times. We continue while the array dz has at least one non-zero
value. If this process terminates, the answer is YES. If it runs infinitely, the answer is NO.

For example, in the first sample case we get the following arrays:
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• d0 = (1)

• d1 = (1, 1)

• d2 = (1, 2, 1)

• d3 = (0, 2, 2, 0)

• d4 = (0, 1, 2, 1, 0)

• d5 = (0, 0, 1, 1, 0, 0)

• d6 = (0, 0, 0, 0, 0, 0, 0)

However, this solution is still not practical: how do we check if the process runs infinitely? Looking
at a few examples can help spot a pattern: if we ever get a 3, then the process never stops. Having
identified this pattern, it is relatively easy to prove. Since we always add the same number to two
adjacent elements of dz+1, getting a 3 in it means that one of its adjacent numbers will be at least
2. And then, even if there are no forbidden cells at all anymore, 3, 2 becomes 2, 3, 1 on the next
diagonal, so we have a 3 adjacent to a 2 again, and this will repeat forever.

What if we never get a 3? Then it turns out that as soon as we pass all forbidden cells, we will
start going down towards all zeros and eventually get there. With no forbidden cells, a 1 does not
propagate to the next diagonal at all, and a 2 propagates two adjacent +1s to the next diagonal.
So if we have a sequence that looks like (2, 2, . . . , 2) with k 2s, on the next diagonal we will get
(1, 2, 2, . . . , 2, 1) with k − 1 2s, so after k diagonals the 2s will disappear.

This argument also demonstrates that the process will converge after O(n) steps, since every for-
bidden cell will create a constant amount of additional 2s, and without forbidden cells the number
of 2s decreases by at least 1 per step. Therefore we finally have a complete solution, albeit one that
runs in O(n2) which is too slow for n = 106.

In order to make it faster, we have to take a closer look at the changes of the array d. Suppose the
array looks like (0, 0, . . . , 0, 1, 2, 2, . . . , 2, 1, 0, 0, . . . , 0) for a certain diagonal. How is it going to look
for the next diagonal depending on the locations of the forbidden cells on this diagonal?

• If a cell with a 0 is forbidden, this changes nothing.

• If a cell with a 2 is forbidden, then we are going to get a 3 on the next diagonal, and the answer
will be NO.

• So the only interesting question is whether the two cells with 1 are forbidden:

• If none of the 1s are forbidden, then we get the same structure on the next diagonal, but with
the left 1 moving one position to the right (and therefore the number of 2s decreases by one).

• If only the left 1 is forbidden, then we still get the same pattern on the next diagonal, but the
left 1 stays in the same position (and therefore the number of 2s is unchanged).

• If only the right 1 is forbidden, then it moves one position to the right on the next diagonal
(and therefore the number of 2s is also unchanged).

• Finally, if both 1s are forbidden, then we still get the same pattern on the next diagonal, but
with the number of 2s actually increasing by one.

13
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This suggests the following idea: when there are no 3s or higher on a diagonal, and when not all
numbers are 0s, the array d for it always has the form (0, 0, . . . , 0, 1, 2, 2, . . . , 2, 1, 0, 0, . . . , 0): exactly
two 1s, zero or more 2s in between the 1s, and 0s on the outside. This is not entirely correct: in
the sample discussed above there is also the case of (0, 0, . . . , 0, 2, 2, 0, 0, . . . , 0): exactly two 2s
surrounded by all 0s. This pattern always appears after (0, 0, . . . , 0, 1, 2, 1, 0, 0, . . . , 0) when the 2 is
forbidden, and it is actually the only situation where a 2 can be forbidden without getting a 3. It
turns out that this is the only special case, and we can easily prove by induction that we always
have one of the patterns mentioned above.

Therefore as we go in increasing order of z, for the diagonal a + b = z we can simply store two
integers and a boolean: the position of the left 1, the position of the right 1, and whether we have
the special 0, 2, 2, 0 case. We need to find all forbidden cells on the given diagonal, which we can
achieve by sorting the forbidden cells by the sum of the coordinates and keeping a pointer into
the sorted array as we increase z. After that we can determine the state of the next diagonal in
O(1), so the total running time of this solution is O(n log n) if we use normal sorting, or O(n) if
we use counting/radix sorting (we can use counting sorting since we only care about the first O(n)
diagonals).

The time limit in this problem was pretty tight, so even the O(n) solution had to be implemented
with care. The reason for this was that the O(n2) solution mentioned above yields itself perfectly
to optimizations. The only quadratic part is a couple of small inner loops looking roughly like this:

for (int i = left; i <= right; ++i) {
nam[i] = am[i - 1] + am[i];

}

The C++ compilers are very good at vectorizing such code using SIMD instructions (which you can
enable using some pragmas). But we can also help the compiler because we know that the values
in our arrays are always only 0, 1 or 2, so we can actually represent our array as two bitsets. We
could not get the compiler to efficiently vectorize std::bitset, but it turns out that gcc supports
a relatively new syntax

typedef uint64 fast_vec __attribute__ (( vector_size(32) ));

This defines a new type that works like an array of 4 uint64’s, but supports element-wise operations
including bitwise operations that automatically use vectorization. Using this trick made the O(n2)
solution mentioned above run in under 7 seconds for n = 106, therefore to make sure this solution
does not pass we had to set the tight time limit.

One other potentially relevant remark for implementing the solution: we have mentioned above
that we only care about the first O(n) diagonals, but what is the constant hidden in the O-
notation? Initially one might think that a case with the following forbidden cells is the worst:
(0, 0), (1, 0), (2, 0), . . . , (⌈n−1

2 ⌉, 0), (0, 1), (0, 2), . . . , (0, ⌊n−1
2 ⌋). The final state of the organism in this

case is a big rectangle (so it also catches solutions that assume we only do a linear number of
divisions), and we have n+ 1 nonzero diagonals in this case.

However, the 0, 2, 2, 0 exception from the solution above allows to construct a testcase that is twice
nastier: (0, 0), (0, 1), (1, 0), (1, 1), (2, 2), . . . , (n−3, n−3). In this case the array d constantly changes

14
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from 1, 2, 1 to 0, 2, 2, 0 and back, and we get 2n−2 nonzero diagonals. So if your solution hardcodes
the number of diagonals to process you need to go as high as 2n− 2.

For more context about the origins of this problem and related topics you can check out the following
paper: F. Chung, R. Graham, J. Morrison, A. Odlyzko, Pebbling a Chessboard, Amer. Math.
Monthly 102 (1995), pp. 113–123.
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I Disks
Author: Giovanni Paolini
Preparation: Giovanni Paolini

To start, we build the graph that describes the tangency relation between the disks: each disk is
represented by a node in the graph, and an edge connects two nodes if and only if the corresponding
disks are tangent. Constructing this graph can be done in time O(n2) by checking all pairs of disks.
In fact, it can be done in faster than quadratic time, but this is not necessary to solve the problem
with the given constraints.

Suppose that you change the radii of the disks by real numbers δ1, . . . , δn. In order to maintain
tangency, we must have δi + δj = 0 whenever the i-th and j-th disks are initially tangent. In fact,
this is condition is also sufficient, provided that δ1, . . . , δn are small enough in absolute value (to
avoid overlaps and to keep all the radii positive).

Fix a connected component of the tangency graph, and fix any node i in this component. The value
δi determines the values of δj for all j in the same connected component, and each δj has to be
equal to either δi or −δi. If the connected component is not bipartite, it contains a cycle of odd
length, and such a cycle shows that δi = −δi and so δi = 0. On the other hand, if the connected
component is bipartite, then it is possible to assign any real value to δi. Color the nodes of such
a bipartite connected component black and white, so that every edge connects a white node and
a black node; use white to color the node i. The sum of the radii in this connected component
changes by δi · k, where k is the difference between the number of white nodes and the number of
black nodes. In order to strictly decrease the sum of the radii, we need a different number of black
and white nodes (k ̸= 0); if this happens, we can pick δi to be any sufficiently small real number
such that δi · k < 0.

To summarize, the answer is YES if and only if there is at least one connected component which is
bipartite and has a different number of white and black nodes. This condition can be checked in
time O(n).
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J Amanda the Amoeba
Author: Lucian Bicsi
Preparation: Martin Kacer

To solve this problem, we first find a path PAB connecting two pixels A and B such that

• Pixel A is a part of the initial position.

• Pixel B is a part of the final position.

• All inner pixels of PAB (let us denote their sequence as QAB) are free pixels, neither inside the
initial position nor the final one.

Note that it is generally allowed to select two neighbouring pixels or even having A = B, in which
case QAB will be empty. For the solution to work, it is not important how such a path is found,
one possible way is to find the shortest path between the initial and final position.

If no such path exists, the problem has no solution, as it means the initial and final position are
completely separated by blocked cells. Otherwise, the final position is reachable and the problem
has a solution, which will be proven by describing its construction.

As the next step, we will construct a tree TA rooted in pixel A and containing all pixels of the initial
position (and no other pixels), and also a tree TB rooted in pixel B and containing all pixels of the
final position (and only them). Again, it is not important how the trees look like, as far as they
contain all appropriate pixels. It is easy to construct them using either DFS or BFS.

The solution then consecutively removes pixels of TA bottom-up, starting from leaves and proceeding
to parents when they become leaves. Such removed pixels are first added to fill the sequence QAB,
and then to tree TB top-down, starting with B and going to lower nodes after their parents were
added. In the end, pixels of QAB need to be removed (and added to the bottom of TB). After that,
the amoeba will occupy the exact final position.

There is one more important issue to cope with. The trees TA and TB are not necessarily disjoint,
which means that some (or even many) pixels may appear in both. While removing pixels from TA

and adding them to TB, the following situations may occur:

• Some pixel should be removed from TA but we know it is also part of TB and has not been
added yet. In this case, the algorithm proceeds just normally, removing the pixel. It will
later be added again to the body, which adds to the total number of moves, but there is no
requirement to minimize that number.

• Some pixel should be added to TB but it is still part of the body, as it was not yet removed
from TA. In such a case, the pixel is skipped (and stays a part of the body to keep it connected)
and it has to be marked as such. When the algorithm later proceeds to that pixel as part of
TA, it must not be removed anymore, and the algorithm proceeds to other pixels in TA.

These steps keep the amoeba connected at all times, and in the end, all pixels of TB are occupied,
which means reaching the final position. Although the algorithm may remove some pixels and then
add the same pixels again, this happens at most once for each of the pixels. In fact, each pixel
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is removed at most once and also added at most once, which means the maximal number of steps
produced by the algorithm is limited by the total number of pixels in the pixture, r · c, which is way
below the required limit.
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K Make Triangle
Author: Anton Trygub
Preparation: Anton Trygub

We will denote these groups as A,B,C correspondingly.

Wlog na ≤ nb ≤ nc, and x1 ≤ x2 ≤ . . . ≤ xn. Let x1 + x2 + . . . + xn = S. We just want the
sum in each group to be smaller than S

2 . Let’s note some obvious conditions for construction to be
possible:

• The largest group is not too large: x1 + x2 + . . .+ xnc <
S
2 ;

• The largest item is not too large: xn + (x1 + x2 + . . .+ xna−1) <
S
2 .

It turns out that these conditions are sufficient! We will prove even stronger statement.

Lemma. Assume we already placed some numbers, which are ≥ than any remaining numbers.
Assume current sum in group g is Sg, the number of empty spots in group g is n′

g, and there are
n′
a + n′

b + n′
c = n′ numbers remaining, x1 ≤ x2 ≤ . . . ≤ xn′ . Then, it’s possible to distribute the

remaining numbers if and only if the following conditions hold:

• No group is too large: for any group g,

Sg + x1 + x2 + . . .+ xn′
g
<

S

2

• The largest item is not too large: there exists a group g with n′
g > 0, such that

Sg + xn′ + (x1 + x2 + . . .+ xn′
g−1) <

S

2

Proof. These conditions are obviously necessary; let’s show that they are sufficient. Forget about
na ≤ nb ≤ nc for now Wlog we can put the largest element xn′ in group a, so Sa + xn′ + (x1 + x2 +
. . .+xn′

a−1) <
S
2 . Put the remaining numbers in the other two groups arbitrarily. If both have sum

less than S
2 , we are good! Otherwise, wlog, sum in group B is at least S

2 .

Now, start swapping free elements in B and C one by one. If at some point sums in both B and
C were smaller than S

2 , we are good. Note that it’s not possible that at one moment, the sum in
B is ≥ S

2 , and at next the sum in C is ≥ S
2 : the sum in C currently is at most S − S

2 − xn′ , and
it will decrease by at most xn′ and increase by at least 1 after the swap, so it will still be at most
S − S

2 − 1 < S
2 . So, the only possibility is that the sum in B is still ≥ S

2 .

Now, note that if we swap free elements in A and C, the sum in B is still ≥ S
2 . Also, note that if

n′
C = 0, that is, there are no free elements in C remaining, then we swap free elements in A and B,

and we will either get a valid partition, or the sum in B will still be ≥ S
2 , as it’s not possible for

sum in A to get ≥ S
2 after one swap, for the same reason.

So, here is the idea: we will start swapping elements, so that the smallest n′
B end up in B. We will

get a contradiction, since we know that SB + x1 + x2 + . . .+ xn′
B
) < S

2 .
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This lemma also gives us a way to find a construction: add elements from largest to smallest. When
deciding where to put an element, put it in any group, such that the conditions will hold after we
put it there. We can check these conditions in O(1) after we sorted xis and precomputed their
prefix sums.

Runtime O(n log n).
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