import sys n = int(input()) nx, ny = map(int, input().split()) d = list(map(int, input().split())) res = [None for _ in range(n - 1)] def uv(x, y): return x + y, x - y def xy(u, v): x = (u + v) // 2 y = (u - v) // 2 return x, y def solve_jump(l, r, d, x, y): # u = x + y, v = x -y u = x + y v = x - y u0, v0 = uv(-r, 0) u1, v1 = uv(-l, 0) u2, v2 = uv(l, 0) u3, v3 = uv(r, 0) # intersect: thin - fat # r - d if u0 <= u + d <= u3 and v - d <= v0 <= v + d: return xy(u + d, v0) # r - u if u0 <= u + d <= u3 and v - d <= v3 <= v + d: return xy(u + d, v3) # r - d1 if u1 <= u + d <= u2 and v - d <= v2 <= v + d: return xy(u + d, v2) # r - u1 if u1 <= u + d <= u2 and v - d <= v1 <= v + d: return xy(u + d, v1) ### # l - d if u0 <= u - d <= u3 and v - d <= v0 <= v + d: return xy(u - d, v0) # l - u if u0 <= u - d <= u3 and v - d <= v3 <= v + d: return xy(u - d, v3) # l - d1 if u1 <= u - d <= u2 and v - d <= v2 <= v + d: return xy(u - d, v2) # l - u1 if u1 <= u - d <= u2 and v - d <= v1 <= v + d: return xy(u - d, v1) ### # u - l if v0 <= v + d <= v3 and u - d <= u0 <= u + d: return xy(u0, v + d) # u - r if v0 <= v + d <= v3 and u - d <= u3 <= u + d: return xy(u3, v + d) # u - l1 if v1 <= v + d <= v2 and u - d <= u1 <= u + d: return xy(u1, v + d) # u - r1 if v1 <= v + d <= v2 and u - d <= u2 <= u + d: return xy(u2, v + d) ### # d - l if v0 <= v - d <= v3 and u - d <= u0 <= u + d: return xy(u0, v - d) # d - r if v0 <= v - d <= v3 and u - d <= u3 <= u + d: return xy(u3, v - d) # d - l1 if v1 <= v - d <= v2 and u - d <= u1 <= u + d: return xy(u1, v - d) # d - r1 if v1 <= v - d <= v2 and u - d <= u2 <= u + d: return xy(u2, v - d) # No intersections - any point is fine return (x + d, y) def rec_solve(i, l, r): # Solve the i-th one if the current circle is l..r (inclusive) if i == n - 1: # End # Check whether the final statue is in here dl = abs(nx) + abs(ny) if dl % 2 != l % 2 or not (l <= dl <= r): # Nope print("NO") sys.exit(0) # OK - we want to end here return (nx, ny) cd = d[i] new_r = r + cd if cd > r: # The inner radius is going to be defined by going left from r new_l = cd - r elif cd >= l: # The inner radius is going to match the parity new_l = (l + cd) % 2 else: # The inner radius is defined by going inwards from l new_l = l - cd tx, ty = rec_solve(i + 1, new_l, new_r) # We have target coordinates to reach # Find where this statue has to be for the jump to be valid cx, cy = solve_jump(l, r, cd, tx, ty) res[i] = (cx, cy) return cx, cy rec_solve(0, 0, 0) print("YES") for p in res: print(*p) print(nx, ny)