#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; using vvi = vector<vi>; using pii = pair<int ,int>; using vpii = vector<pair<int, int>>; using pipii = pair<int, pii>; #define sz(x) (x.size()) const int M = 41; const int INF = 1e9 + 7; using ld = long double; const ld PI = M_PIl; template<class T> struct Point { typedef Point P; T x, y; explicit Point(T x = 0, T y = 0) : x(x), y(y) {} bool operator==(P p) const { return x == p.x && y == p.y; } P operator+(P p) const { return P(x+p.x, y+p.y); } P operator-(P p) const { return P(x-p.x, y-p.y); } P operator/(ld o) const { return P(x/o, y/o); } T cross(P p) const { return x * p.y - y * p.x; } T cross(P a, P b) const { return (a-*this).cross(b-*this); } ld dist() const { return sqrtl(dist2()); } ld dist2() const { return x*x+y*y; } P unit() const { return *this / dist(); } bool operator<(P p) const { return tie(x, y) < tie(p.x, p.y); } }; using P = Point<ld>; vector<P> convexHull(vector<P> pts) { if(sz(pts) <= 1) return pts; sort(pts.begin(), pts.end()); vector<P> h(sz(pts) + 1); int s = 0, t = 0; for(int it = 2; it--; s = --t, reverse(pts.begin(), pts.end())) { for(P p : pts) { while(t >= s + 2 && h[t-2].cross(h[t-1], p) <= 0) t--; h[t++] = p; } } return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])}; } ld polygonArea2(vector<P> &v) { ld a = v.back().cross(v[0]); for(int i = 0; i < sz(v)-1; i++) { a += v[i].cross(v[i+1]); } return a; } void solve() { int n; cin >> n; vvi a(n, vi(n)); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { cin >> a[i][j]; } } int m = n * M; vvi b(m, vi(m)); for(int i = 0; i < m; i++) { for(int j = 0; j < m; j++) { b[i][j] = a[i%n][j%n]; } } // vvi right(n, vi(n)); // vvi down(n, vi(n)); vvi costs(M, vi(M, INF)); for(int sx = 0; sx < n; sx++) { for(int sy = 0; sy < n; sy++) { priority_queue<pipii, vector<pipii>, greater<pipii>> q; vvi vis(m, vi(m)); vvi dist(m, vi(m, INF)); int X = sx + M/2 * n; int Y = sy + M/2 * n; dist[X][Y] = 0; q.push({0,{X, Y}}); while(!q.empty()) { auto [x, y] = q.top().second; q.pop(); if(vis[x][y]) continue; vis[x][y] = true; for(int dx = -1; dx <= 1; dx++) { for(int dy = -1; dy <= 1; dy++) { if(abs(dx) + abs(dy) != 1) continue; int c = x + dx; int d = y + dy; if(c < 0 || d < 0 || c >= m || d >= m) continue; if(vis[c][d]) continue; int nd = dist[x][y] + 1 + abs(b[x][y] - b[c][d]); // cerr << "nd = " << nd << endl; if(dist[c][d] > nd) { dist[c][d] = nd; // vis[c][d] = true; q.push({dist[c][d], {c, d}}); } } } } for(int i = 0; i < M; i++) { for(int j = 0; j < M; j++) { costs[i][j] = min(costs[i][j], dist[n*i+sx][n*j+sy]); } } } } int off = M/2; // vector<pair<double, double>> cost_per_unit; vector<P> pts; for(int i = 0; i < M; i++) { for(int j = 0; j < M; j++) { if(i == off && j == off) continue; int dx = i - off; int dy = j - off; // ld cost_per_unit = (double)costs[i][j] /(sqrt(dx*dx+dy*dy) * n); pts.push_back(P(dx, dy) / ((ld) costs[i][j] / n)); // cost_per_unit.push_back({atan2(i-off, j-off), (double)costs[i][j] /(sqrt(dx*dx+dy*dy) * n)}); } } // sort(cost_per_unit.begin(), cost_per_unit.end()); // for(auto p : cost_per_unit) { // cerr << p.first << ' ' << p.second << endl; // } vector<P> hull = convexHull(pts); ld area = polygonArea2(hull) / 2; cout << fixed << setprecision(0) << area * 1e40 << endl; } int main() { ios::sync_with_stdio(false); cin.tie(0); solve(); return 0; }